USAF INVESTIGATION OF MAJOR AIRCRAFT ACCIDENT
A-12 S/N 125
5 JANUARY 1967
2. Chase aircraft requiring refueling will only be scheduled in one of two ways depending on the route flown by the primary aircraft.

25X1A

a. Refueling after - chase pilot will observe departure from tanker aircraft, then join tanker and take a full load of fuel. Chase pilot will then continue practice contacts ending with a top off refueling approximately 15 minutes after the completion of refueling. (This procedure will permit the chase aircraft to have the maximum amount of fuel available for the longest practicable time.)

25X1A

b. Refueling before - chase aircraft will rendezvous with tanker 45 minutes prior to ARCP, refuel as in the above procedure and complete refueling (with a full fuel load) not later than 30 minutes prior to ARCP. This will permit tanker aircraft to reposition for rendezvous or chase aircraft to have sufficient fuel to observe refueling.

25X1A

k. Head rest spacers have been removed from all aircraft.

1. Underside surface of head rest ramp and top surface of the drogue parachute pack are being redesigned by LAC so as to provide a smooth interface.

m. (1) LAC is to provide a fix (and testing) of the rotary actuator straps. Modification is expected to begin the week of 20 Feb 67.

(2) The automatic lap belt release mechanism and a manual release lever being studied by LAC, both items are to be discussed during the forthcoming meeting of Life Support personnel. It is possible that a prototype may be available at this meeting.
Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4

о. The shoulder harness loops have been sewn (inspected and corrected) to meet the specifications of T.O. 13A-1-1.

п. The prototype emergency face plate heater and prototype cover for oxygen controller assembly are to be presented and discussed at special equipment meeting/evaluation. These items are to be tested and if acceptable put into use as soon as possible.

о. A D-ring cable cutter is being designed by LAC. No prototype production date available at this time.

р. All future modifications to the ejection system will be received only through testing and qualification prior to issuance of TCTO kits or service bulletins. Additionally a test program will be set up to test all new equipment with our present equipment.

Deputy Commander for Operations
THIS IS A PROJECT OXCART DOCUMENT
SPECIAL HANDLING REQUIRED
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AF FORM 711</td>
</tr>
<tr>
<td>B</td>
<td>AF FORM 711a</td>
</tr>
<tr>
<td>C</td>
<td>AF FORM 711b</td>
</tr>
<tr>
<td>D</td>
<td>AF FORM 711c</td>
</tr>
<tr>
<td>E</td>
<td>AF FORM 711d</td>
</tr>
<tr>
<td>F</td>
<td>AF FORM 711e</td>
</tr>
<tr>
<td>G</td>
<td>AF FORM 711f</td>
</tr>
<tr>
<td>H</td>
<td>AF FORM 711g</td>
</tr>
<tr>
<td>I</td>
<td>UNSATISFACTORY REPORT</td>
</tr>
<tr>
<td>J</td>
<td>TEARDOWN DEFICIENCY REPORT</td>
</tr>
<tr>
<td>K</td>
<td>LIST OF TECHNICAL ORDERS NOT COMPLIED WITH</td>
</tr>
<tr>
<td>L</td>
<td>AFTO FORMS 781 SERIES</td>
</tr>
<tr>
<td>M</td>
<td>AF FORM 5</td>
</tr>
<tr>
<td>N</td>
<td>STATEMENTS</td>
</tr>
<tr>
<td>O</td>
<td>REBUTTALS</td>
</tr>
<tr>
<td>P</td>
<td>ORDERS APPOINTING INVESTIGATING BOARD</td>
</tr>
<tr>
<td>Q</td>
<td>BOARD PROCEEDINGS</td>
</tr>
<tr>
<td>R</td>
<td>DD FORM 173 OR DD FORM 1080</td>
</tr>
<tr>
<td>S</td>
<td>DD FORM 365 (Weight and Balance Clearance Form F)</td>
</tr>
<tr>
<td>T</td>
<td>STATEMENT OF DAMAGE TO PRIVATE PROPERTY</td>
</tr>
<tr>
<td>U</td>
<td>CERTIFICATE OF DAMAGE (List of Parts Damaged), MANHOURS REQUIRED TO REPAIR, AND COST</td>
</tr>
<tr>
<td>V</td>
<td>TRANSCRIPTS OF RECORDED COMMUNICATIONS</td>
</tr>
<tr>
<td>W</td>
<td>ANY ADDITIONAL SUBSTANTIATING DATA REPORTS</td>
</tr>
<tr>
<td>X</td>
<td>OTHER AF FORMS (Failure and Consumption Reports, Etc.)</td>
</tr>
<tr>
<td>Y</td>
<td>DIAGRAMS (Fall Out—Impact Area, Etc.)</td>
</tr>
<tr>
<td>Z</td>
<td>PHOTOGRAPHS</td>
</tr>
</tbody>
</table>

REMARKS

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
USAF Accident Incident Index

TAB

A – AF FORM 711 – USAF Accident/Incident Report
B – AF FORM 711a – Ground Accident Report (Not applicable for Actf Accidents)
C – AF FORM 711b – Aircraft Accident/Incident Report
D – AF FORM 711c – Aircraft Maintenance Materiel Report
E – AF FORM 711d – Missile Accident/Incident Report
F – AF FORM 711e – Explosives Accident/Incident Report
G – AF FORM 711f – Nuclear Accident/Incident Report
H – AF FORM 711g – Life Sciences Report of an Individual
I – Unsatisfactory Report
J – Teardown Deficiency Report
K – List of Technical Orders Not Complied With
L – AFTO Forms 781 Series
M – AF FORM 5
N – Statements
O – Rebuttals
P – Orders Appointing Inves Board
Q – Board Proceedings
R – DD FORM 175 or DD FORM 1080
S – DD FORM 365 (Wgt-Balance)
T – Private Property Damage
U – Damage to Aircraft
V – Communication – Transcripts
W – Additional Data
X – Other Forms
Y – Diagram
Z – Photos
USAF ACCIDENT/INCIDENT REPORT

1. DATE OF OCCURRENCE (Year, month and day)
 1967, Jan 5, Thursday

2. VEHICLE/MATERIAL INVOLVED
 (State & Serial No., if applicable)
 A-12 #125

3. FOR GROUND ACCIDENTS ONLY
 (Base Code and Report Serial No.)
 N/A

4. PLACE OF OCCURRENCE, STATE, COUNTY, DISTANCE AND DIRECTION FROM NEAREST TOWN, IF ON
 BASE, IDENTIFY, IF OFF BASE GIVE DISTANCE FROM NEAREST BASE.
 Nevada, Lincoln Co., 20M miles SW Leith, Antelope I.L.
 70 miles from 1630 PST

5. HOUR AND TIME ZONE LOCAL.
 DAY NIGHT
 DAWN DUSK
 0300 PST

6. ORGANIZATION POSSESSING OWNED VEHICLE OR MATERIAL AT TIME OF MISHAP

 Major Command
 Subcommand or AF
 Air Division
 Wing
 Group
 Squadron or Unit
 Name and Base Code
 N/A

7. STRUCTURAL CANCER, EXCLUDING cable (list organizations of second vehicle, if they differ from item 7 above)
 26X1A

8. BASE AND COMMAND, SUBMITTING REPORT (Classify Below)

9. LIST OF PERSONNEL DIRECTLY INVOLVED
 (For aircraft include operator and all other persons whether in plane or not. If more space is required to list all personnel, use additional sheet(s.)

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>M.I.</th>
<th>Grade</th>
<th>Service No.</th>
<th>Assigned Duty</th>
<th>Acre Rating</th>
<th>Injury to Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>26X1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. NARRATIVE DESCRIPTION OF ACCIDENT. Give a detailed history of what occurred and circumstances leading to the mishap as applicable. The result of investigation and analysis to include discussion of all cause factors listed, findings, and recommendations, and any corrective action taken. (Continue on reverse, if space required.)

 (Continued on following page)

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)

12. AUTHENTICATION

 Certification by: (Name)
 TYPED NAME AND GRADE
 Board President
 Approved For Release 2001/08/29: CIA-RDP71B00590R000100010001-4
 USAP

 Signature
 Date

 Approved For Release 2001/08/29: CIA-RDP71B00590R000100010001-4

 X.O. GOVERNMENT PRINTING OFFICE: 1992 OP--485197
A. HISTORY OF FLIGHT:

On 5 January 1967, [redacted] was scheduled to fly Article Number 130 on a routine training flight with a 1000 local takeoff. (reference Tab W, Flying Schedule)

At the 0730 operations briefing Article 130 was cancelled for maintenance. [redacted] DCOT, substituted [redacted] for [redacted] sortie scheduled for a 1200 takeoff in Article 125. The mission included two air refuelings and two cruise performance legs. Mission planning was accomplished by the mission planning staff. Two F-101 aircraft were scheduled as chase aircraft for applicable portions of the mission.

The formal briefing for the pilot and chase pilot was conducted at 1030 by the operations staff. (reference Tab V, Transcript of Premission Briefing). Prior to 1030, [redacted] had conducted informal briefings with [redacted] on mission requirements. [redacted] suited on schedule after which he was driven to the aircraft.

The aircraft had been pre-flighted by the maintenance ground crew in accordance with existing procedures. The Interior Pre-Flight, Starting Engines and Before Taxiing checks were accomplished without discrepancy.

The aircraft was taxied to the runway and cleared for takeoff. Takeoff was 1159 local (1959Z). The first refueling was scheduled in Yuletide Special Operating Area with a 2015Z ARCT and a 31,000 pound on load. Initial contact was established at 2018Z and air refueling completed at 2035Z (1:56 flight time) 10NM beyond end refueling point with an actual transfer of 56,000 pounds. (reference Tab N, Statement by [redacted]).

[redacted] in Dutch 45 stated that was all the fuel he could take. During the climb, [redacted] reported turbulence from 48,000 to 52,000 feet and the Auto Pilot disengaged and a circuit breaker popped which would not reset (reference Tab V, Transcript of Dictect Tape). [redacted] reported that due to turbulence he was changing his climb schedule.

[redacted] made a report 657NM DTG to position six. This is ten miles past his planned level off point at which he should have been at [redacted] feet with 42,000 pounds fuel. He reported at 66,000 feet with 45,000 pounds fuel. (reference Tab V, Dictect Tape).

At first cruise "how goes it" check point, (1:06 flight time) [redacted] reported 36,700 pounds, actual fuel against 36,600 pounds programmed. The entire leg was above fuel program running from 500 pounds at first check point to 1100 pounds at position eight. (reference Tab V, Dictect Tape). There were no deviations plotted from the planned track.

At the start descent point of 260NM DTG (distance to go) from the second ARCT in the Yuletide Area, [redacted] was 1100 pounds above the planned fuel and four minutes late, (1:47 flight time) at level off altitude of 29,000 feet, 52NM DTG, fuel remaining was 14,000 pounds. Twenty-two miles later, [redacted] reported he was below Bingo fuel. (reference Tab V, Dictect Tape). This meant fuel remaining is below 11,500 pounds. He lost an additional two minutes due to the 52 mile level off instead of the scheduled 20 mile Bottom Out Point. After UHF contact with his tanker, Cute [redacted] stated he wanted fuel right now. Refueling was completed with four disconnects and a climbing flight path from 30 to 33 thousand feet for the last six minutes of refueling. Tanker refueling was average or better. At end of refueling, Dutch 45 was advised his position was over
Current VOR (2:35 flight time) and on load was 61,000 pounds, 1000 pounds over briefed. stated he needed another 4 to 5 thousand pounds. He was advised the tanker was dry as they had refueled the chase plane with 4,000 pounds prior to refueling (reference tab N, Statement by that was a non-scheduled refueling). He contacted Bungalow and advised he was around 4000 pounds short and would have to cut short his turning point on the second cruise control leg. He requested this information be passed to all agencies. He also stated he was happy to cut it short as he was hand flying the entire mission with an inoperative auto pilot. (reference Tab N, Statement from "Bungalow" and statement)

gave a report at planned level off where he should have been at feet with 42,400 pounds of fuel. He gave his altitude as feet with 40,300 pounds of fuel. This is 2100 pounds below the fuel curve. Twenty-seven miles later he reported his level off altitude as feet with 39,800 pounds of fuel remaining. Because he was still climbing, this would put him approximately 2300 pounds below the curve.

After this point there are two more entries on Dictect that mention fuel, however, they do not include a location or DTG from a fix. The tape had been severely damaged in the wreckage and only small pieces of the last portion have been recovered. There is sufficient information to plot actual fuel consumption for the second cruise control leg.

The FAA Center reported flight path and the Signal Conditioner and Data Monitor (SCDM) printout, both plot out very well together; however the SCDM plots the route flown 53 miles greater than planned and show the route flown very close to "as briefed" with the pilot electing to fly the complete, rather than the alternate or shorter mission. Verification of the times show the actual flight continued to run four to six minutes late during the entire second cruise leg.

At 2320Z (3:21 flight time) the HF Single Side Band Tape in the Command Post recorded A-OK chirps. Two minutes later on his first HF voice transmission reported he was just rolling out of the far east turn and running 800 to 1000 pounds short on fuel which was due partially to the 53 additional miles flown; however he expected to make up the deficiency (reference Tab V, Transcript of HF/UHF Transmissions) His planned fuel at this point was 23,300 pounds. This would give him an actual fuel reading of 22,300 pounds.

Last fuel check point is Position 16, Cimarron, N.M., 13,800 pounds of fuel is required if he is to continue to home plate. If he has less than 13,800 he was briefed to land at Albuquerque. The flight plan time to this point is 3:36. passed Position 16 at 3:42 flight time proceeding towards home plate. At 23:45Z, 3:46 flight time, reports he is abreast Farmington with 7500 pounds of fuel. This position plots 15 miles east of abreast Farmington from the SCDM. He cannot explain the excessive loss of fuel but he thinks he can make home plate okay. 7500 pounds is the planned reserve he should have on arrival over home plate (reference tab V, HF Tape). Normal fuel consumption would have put him abreast Farmington with 11,800 pounds of fuel.

At approximately 305NM from the Base, 3:49 flight time, the SCDM shows a reduction of speed started. At 260NM, 3:51 flight time, the SCDM shows him leaving altitude feet with a continuous descent. At 23:56, 492 he reports 120NM with 3900 pounds and he should be able to make it to home plate. At 0000:262 he reported 85NM and 2700 pounds. At 0001:562
he reported, "I'm going to have to jump out of this thing at 22 (two chirps interrupt transmission) - flaming out." Showing low fuel started at that time and continued till 2402:24Z at which time total power was lost or aircraft impacted with the ground. Total flight time was estimated at 4 hours 3 minutes. At time of impact the aircraft was estimated to be in a 69 degree dive angle, wings near level. The scatter pattern of wreckage was on an average heading of 240 degrees (reference Tab Y, Wreckage Diagram). Captain Sharp witnessed the crash while flying in an F-105 at approximately eight thousand feet at an estimated five miles Northeast of the impact point. Due to twilight in addition to a frontal passage the wreckage was not located till 2306Z on the 6th of January.

Examination of the wreckage revealed complete disintegration upon impact. All identifiable components were examined. Analysis and witness statement reveal the aircraft was intact immediately prior to impact with the exception of a lower wing fillet and the canopy and seat. There was no indication of in-flight fire or explosion and all burning was indicative of post impact fire.

When the pilot initiated the ejection sequence, the canopy separated and both over-the-shoulder cameras tore loose from the canopy and were never recovered. All recording tapes aboard the aircraft were partially destroyed; however, many items of significant data were recovered from the tapes as shown in Tab "V".

Careful examination of the existing wreckage did indicate that the aircraft did not have an engine, hydraulic, oil, flight control, electric, electronics or structural failure prior to impact. Examination of the instrumentation data did indicate the possibility of an erroneous fuel indication, fuel leak, or fuel exhaustion may have existed.

The pilot ejected but was fatally injured when he failed to separate from the seat before impact. During descent, the pilot relayed in a calm, rational voice to both ground and airborne agencies, an intent to eject upon flameout of the engines. The full knowledge of an impending requirement for ejection provided ample time for pre-ejection preparation. As best can be determined, ejection was accomplished somewhere between the altitudes of 20M and 35M and above 295 KIAS. Speed was established by the fact that the speed sensor permitted actuation of the four second delay mode only in the ejection system.

The pilot utilized the primary ejection system (D-Ring) and there was no indication of any canopy removal difficulties. All seat initiators fired normally including the lap belt initiator and the rotary actuator (man/seat separator) fired and reeled in 13 inches of tape. The pilot apparently never left the seat for some undetermined reason. He was fatally injured upon impact with the ground approximately eight miles east of the aircraft impact area.

SECRET
B. INVESTIGATION AND ANALYSIS:

1. Witness statements, cockpit tape recorder data (Dictect), recorded HF radio transmissions, and S&D&M flight data monitor, were used to reconstruct the flight performance around both navigation legs. Initial review indicated that three possibilities existed which would have resulted in fuel depletion near the point of flame out.

A full fuel offload was not obtained during the air refueling preceding the last navigation leg. Had the pilot disregarded all briefed fuel minimums and extended the flight profile beyond the point of safe return, fuel quantities remaining during the descent to land would have approximated those reported by HF radio prior to flame out. However, the cockpit tape recorder and HF radio transmissions show that indicated fuel remaining over check points was essentially as programmed at the planned turning point. The pilot was using a reduced power climb and cruise procedure which during previous tests has reduced fuel consumption by the approximate amount short after refueling. Therefore it is entirely possible that indicated fuel reserves were at specified minimums by the time he reached the turn and the possibility that he knowingly disregarded briefed minimums was not substantiated by data recorded.

A rapid fuel leak which occurred after the last planned check point for diversion to a suitable alternate could have resulted in siphoning all the remaining fuel from one of the tanks. This would account for the near normal fuel consumption during descent after the defective tank contents had emptied but would not have explained similar sudden loss of fuel during approach to the tanker for refueling after the previous cruise profile. A fuel leak of such proportions would have been readily apparent to the tanker crew and chase pilot during refueling. The two sudden drops in fuel quantity apparently occurred with approximately the same amount indicated on the gauges and were too similar to be ignored. All possibilities of increasing fuel consumption during approach to the tanker such as the use of afterburner were considered, but the high rate of indicated fuel depletion could not be explained without a malfunction of some type.

The possibility of a gross fuel quantity gauge error which disappears when the tank, containing a faulty fuel probe empties, was thoroughly investigated. Tanks three and five empty at about the fuel quantity where the sudden decrease occurred. Tests were conducted which indicate that this possibility does exist. Both flight profiles were reconstructed with the assumption that the actual fuel quantity on board the aircraft was between three and four thousand pounds less than indicated after both refuelings. Applying this assumption, the amount of fuel offloaded and the reported quantities remaining at various points along the route assume a logical sequence. The board reached the conclusion that the most probable cause of fuel depletion resulted from a faulty quantity indicating system and that the error rapidly decreases subsequent to an indicated fuel remaining of 14,000 pounds.

2. Examination of the wreckage revealed complete disintegration upon impact. The aircraft was intact immediately prior to impact with the exception of a lower wing fillet and the canopy and seat. There was no inflight fire or explosion. All burning was indicative of post impact fire. During ejection sequence the canopy separated from the aircraft in a normal manner and impacted approximately nine miles east of the wreckage. Analysis of the Dictect, S&D&M, and Flight Recorder tapes was difficult because of damage sustained at impact. The over shoulder cameras were missing from the canopy. Maintenance forms and records were reviewed and no discrepancies were noted. Due to disintegration of the aircraft and components, integrity of systems could not be specifically determined; however, investigation revealed no structural, engine or flight control failure prior to flame out and/or ground impact.

3. Detailed examination at the site of the pilot/seat impact area established that the pilot had not separated completely from the seat and was fatally injured at time of impact. Subsequent investigation of the recovered ejection system components revealed that all systems functioned normally to the point of man/seat separation. Analysis of the components...
of the lap belt release mechanism and tests conducted to simulate separation conditions, could not absolutely establish a single primary cause for the failure of man/seat separation; however, it was determined that a number of possible causes for the failure of the man to separate from the seat could be deduced. First, the lap belt release mechanism could have been bound by excessive tension or side-loading on the lap belt at the time of automatic lap belt firing. Second, the intrusion of a foreign object into the lap belt release housing could have prevented the release function. Third, the drogue parachute pack could have been jammed into the headrest spacer extension restricting parachute travel from under the headrest. Finally, any combination of two or more conditions that would provide tension to the lap belt or shoulder harness disengagement from the lap belt could have caused failure of the pilot to separate from the seat. The pilot could have failed to manually release the lap belt due to excessive seat gyration, visual restrictions and/or obstructions in the vicinity of the lap belt manual release lever within the brief time span available before impact with the ground.

FINDINGS:

1. **Primary Cause**: The primary cause of this accident was fuel depletion from an undetermined cause. The most probable cause was a fuel gauging error resulting in a higher than actual indicated fuel quantity reading.

2. **Contributing Causes**: Pilot factor in that at the time he reported 7500 pounds fuel remaining, he could have diverted to Albuquerque.

3. **Additional Findings**:
 a. The location of the Dictet recorder and the construction of the SC&DM tape cassette does not afford adequate protection.
 b. The pilot was qualified and properly briefed to conduct the mission.
 c. Control tower and the SC&DM tape did not have an accurate time hack with WWV.
 d. During the second refueling the chase aircraft refueled first and took 4000 pounds of fuel which if available to the primary aircraft would probably have enabled the aircraft to return to home base.
 e. A precise method of determining fuel quantity in the tanks during ground fueling does not exist.
 f. Fuel quantity calibration procedures are not optimized in that the calibration is not made in the sequence the fuel is used.
 g. Changing of a fuel probe could change system calibration significantly.
 h. That the primary cause for the failure of the pilot to cleanly separate from the seat could not be determined.
 i. The most probable causes for the pilot failing to separate from the seat were:
 1. Failure of the lap belt to release due to binding or a foreign object intrusion into the release mechanism housing.
 2. Man-seat separator actuated pushing the man and chute pack upward and the seat kit forward. The chute pack jammed against the headrest spacer extension and with constant pressure by the separator belts, the pilot could not separate from the seat.
RECOMMENDATIONS:

a. Consider the relocation of the Dictet recorder in the canopy.

b. Explore the possibilities of making the SC&DM tape cassette crash proof.

c. Establish a requirement to defuel aircraft after each flight comparing the fuel indicator quantity to actual off loaded fuel quantity. An allowable difference limit should be established.

d. On all ground fuelings the aircraft should be filled from a zero-fuel condition and then off loaded to desired fuel quantity. Tolerances must be established for difference in indicator and tanker readings, both at the full and off load points.

e. Fuel tank dip stick capability should be provided.

f. A requirement for fuel system calibration should be established when any major component, such as a probe, is changed.

g. Fuel system quantity calibration procedures should be amended to conduct the calibration in the sequence the fuel is used from the tanks.

h. The Dictet be redesigned to allow a break between each conversation.

i. The last point at which the pilot has the capability to divert to a suitable alternate should be identified on route maps.

j. Local procedures be published for training refueling missions that:

1. The tanker will have required and scheduled fuel aboard plus 10,000 pounds, conditions permitting.

2. Chase missions are scheduled so that no possibility of interference with refueling of the primary receiver occurs.

k. That the headrest spacer be immediately removed from all aircraft.

l. That the underside surface of the headrest ramp and the top surface of the drogue parachute pack be provided a smooth interface.

m. That the rotary actuator (man/seat separator) straps be repositioned to provide maximum forward thrust to the man/parachute mass and the eight nuts and bolts on the front of the seat securing the rotary actuator straps be reversed.

n. That the lap belt automatic release mechanism be reworked to prevent tension or side load binding of the pawl latch lever and a readily accessible manual lap belt release lever be developed.

o. That the shoulder harness loops be sewn to prevent slipping over the automatic lap belt latch lever housing.

p. That the development of emergency face plate heater and the protective cover for the oxygen controller assembly be expedited.

q. That a D-ring cable cutter be installed.

r. That all future modifications to the ejection system receive thorough testing and qualification prior to issuance of TOYO kits or service bulletins.
USAF ACCIDENT INCIDENT INDEX

TAB
A - AF FORM 711 - USAF Accident/Incident Report
B - AF FORM 711a - Ground Accident Report (Not applicable for Acft Accidents)
C - AF FORM 711b - Aircraft Accident/Incident Report
D - AF FORM 711c - Aircraft Maintenance Materiel Report
E - AF FORM 711d - Missile Accident/Incident Report
F - AF FORM 711e - Explosives Accident/Incident Report
G - AF FORM 711f - Nuclear Accident/Incident Report
H - AF FORM 711g - Life Sciences Report of an Individual
I - Unsatisfactory Report
J - Teardown Deficiency Report
K - List of Technical Orders Not Complied With
L - AFTO Forms 781 Series
M - AF FORM 5
N - Statements
O - Rebuttals
P - Orders Appointing Inves Board
Q - Board Proceedings
R - DD FORM 175 or DD FORM 1080
S - DD FORM 365 (Wgt-Balance)
T - Private Property Damage
U - Damage to Aircraft
V - Communication - Transcripts
W - Additional Data
X - Other Forms
Y - Diagram
Z - Photos
AIRCRAFT ACCIDENT/INCIDENT REPORT

To be filled out for principal aircraft involved. (Appropriate block only should be filled out on secondary aircraft.)

ACCIDENT/INCIDENT CLASSIFICATION
- **Flight Accident Resulting in Aircraft Damage**
 - Major [X]
 - Minor []
- **Accident Not Resulting in Aircraft Damage** []
- **Air Force Aircraft Incident** []

Aircraft/Serial Number
- Aircraft: [X-12]
- Serial: #125

3. Aircraft/Serial Number
- Edwards AFB []
- Edwards AFB []

4. Type, Model, Serial No.
- Type: X-1
- Model: Training
- Serial No.: 25X1A

5. Flight reference at time of accident
- X: Instrument
- Flight Plan: VFR/IFR
- Route: Other [X]
- Instrument: Always []

6. Flight reference at time of accident
- Altitude above terrain in sequence: 53,000 ft
- Altitude MSL: 3600 ft
- Highest altitude MSL flown: 53,000 ft

7. At altitude
- Clearance: Edwards AFB []
- Weather VFR/IFR: Always []
- Visibility: 4000 ft [X]
- Type: Training []

8. Airfield data
- Adverse weather conditions: None [X]
- Adverse weather factors: None [X]

9. Weather at time of accident
- Weather at time of accident: None [X]
- Weather at time of accident: None [X]

10. Type of accident
- Type of accident: Abandoned Aircraft []

11. Operator/Flight crew
- Operator/Flight crew: PILOT(S) INVOLVED (FLIGHT CREW)
- Grade: CTV []
- Component: Not Listed []
- Service Number: N/A []
- Nationality: USA []
- Year of Birth: 1933 []

12. Fire and explosion data
- Fire: None [X]
- Explosion: None [X]

13. Aircraft data
- Aircraft data: 25X1A []
- Aircraft data: 25X1A []
- Aircraft data: 25X1A []

14. Type of accident
- Type of accident: Abandoned Aircraft []
- Type of accident: Abandoned Aircraft []

15. Other pilot
- Other pilot: None [X]
- Other pilot: None [X]

16. At time of accident
- At time of accident: N/A []
- At time of accident: N/A []

NOTE: If more than two pilots are involved, additional pilots may be listed on separate sheets.
FLYING EXPERIENCE (Attach copy of AF Form 8 for Pilot's) involved as outlined in AFR 127-4)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Flying Hours (Excluding AF Issue, Student and other accounted time)</td>
<td>3356</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Jet Time</td>
<td>3067</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 1st Pilot/IF hours, all Aircraft</td>
<td>3044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Weather Instrument Hours</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 1st Pilot/IF hours this Model</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 1st Pilot/IF hours last 90 Days</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 1st Pilot/IF hours last 90 Days this Model</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 1st Pilot/IF hours weather and head last 90 Days</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Pilot hours missed last 90 Days</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Pilot hours last 30 Days</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 1st Pilot/IF hours last 30 Days</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 1st Pilot/IF hours last 30 Days this Model</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date and Duration last previous flight this Model</td>
<td>30 Dec 1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of last proficiency flight checks</td>
<td>8 June 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUSATIVE AGENCY

Cover Factors (Check one primary and all applicable contributing and probable factors.)

<table>
<thead>
<tr>
<th>Operators</th>
<th>Primary</th>
<th>Contributing</th>
<th>Probable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Co-Pilot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type and origin level</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAMAGE

<table>
<thead>
<tr>
<th>Damage to Aircraft</th>
<th>Destroyed</th>
<th>Minor</th>
<th>Substantial</th>
<th>None</th>
<th>Cost (Est.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft was totally destroyed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1</td>
</tr>
</tbody>
</table>

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)

AUTHENTICATION

Approved For Release 2001/08/29: CIA-RDP71B00590R0000100010001-4
USAF ACCIDENT INCIDENT INDEX

TAB

A - AF FORM 711 - USAF Accident/Incident Report
B - AF FORM 711a - Ground Accident Report (Not applicable for Acft Accidents)
C - AF FORM 711b - Aircraft Accident/Incident Report
D - AF FORM 711c - Aircraft Maintenance Material Report
E - AF FORM 711d - Missile Accident/Incident Report
F - AF FORM 711e - Explosives Accident/Incident Report
G - AF FORM 711f - Nuclear Accident/Incident Report
H - AF FORM 711g - Life Sciences Report of an Individual
I - Unsatisfactory Report
J - Teardown Deficiency Report
K - List of Technical Orders Not Complied With
L - AFTO Forms 781 Series
M - AF FORM 5
N - Statements
O - Rebuttals
P - Orders Appointing Inves Board
Q - Board Proceedings
R - DD FORM 175 or DD FORM 1080
S - DD FORM 365 (Wgt-Balance)
T - Private Property Damage
U - Damage to Aircraft
V - Communication - Transcripts
W - Additional Data
X - Other Forms
Y - Diagram
Z - Photos
Aircraft Maintenance/Material Report

Aircraft Maintenance/Material Report

Use this form when AF aircraft accident/incident involves inadequacy, malfunction or failure of AF material.

1. Aircraft TM & Serial Number
- **Type:** A-12
- **S/N:** 06928 (225)

2. Special Reports Data
- **e.** Were Previous UPI's Submitted on Event(s) Involved? **Yes/No:** Yes/No
- **f.** No. and Date of UPI's Submitted as Result of This Accident (Attach copies): Not Applicable
- **g.** Yes/No Requested? **Yes/No:** Yes/No
- **h.** M.S. or T.O. Not Complied With at Time of Accident (List F.O. Nos. and Kilns on separate sheet(s)—Tab K): 27 Service Bulletins were Not Complied

3. Aircraft Historical Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Aircraft</th>
<th>Part, Component or Accessory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Identification</td>
<td>A-12</td>
<td></td>
</tr>
<tr>
<td>Air Force Acceptance Date</td>
<td>25 Feb 1963</td>
<td></td>
</tr>
<tr>
<td>Last Flight Hours</td>
<td>338:57</td>
<td></td>
</tr>
<tr>
<td>Last Overhaul Date</td>
<td></td>
<td>EIA</td>
</tr>
<tr>
<td>Overhauling Activity (Name & Location)</td>
<td>EIA</td>
<td></td>
</tr>
<tr>
<td>Hours Since Overhaul</td>
<td>23:37</td>
<td></td>
</tr>
<tr>
<td>Date of Last Periodic Inspection</td>
<td>Oct 29, 1966</td>
<td></td>
</tr>
<tr>
<td>Type of Last Periodic Inspection</td>
<td>Phase 1</td>
<td></td>
</tr>
</tbody>
</table>

4. Engine Historical Data

(Complete a separate column for each engine involved. Also, complete a separate column for each power plant component involved.)

<table>
<thead>
<tr>
<th>Installed Position</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Model and Series</td>
<td>YJT11D - 20A</td>
<td>YJT11D - 20A</td>
</tr>
<tr>
<td>Engine Serial Number</td>
<td>646204</td>
<td>646243</td>
</tr>
<tr>
<td>Total Engine Hours</td>
<td>285:18</td>
<td>320:24</td>
</tr>
<tr>
<td>Number of Major Overhauls</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hours Since Last Major Overhaul</td>
<td>351:10</td>
<td>351:10</td>
</tr>
<tr>
<td>Date of Last Overhaul</td>
<td>22 Dec 1965</td>
<td>22 Dec 1965</td>
</tr>
<tr>
<td>Overhaul Activity</td>
<td>Pratt & Whitney</td>
<td>Pratt & Whitney</td>
</tr>
<tr>
<td>Date Last Installed</td>
<td>29 Oct 1965</td>
<td>29 Oct 1966</td>
</tr>
<tr>
<td>Hours Since Last Installed</td>
<td>38:02</td>
<td>38:02</td>
</tr>
<tr>
<td>Date of Last Periodic Inspection</td>
<td>26 July 1966</td>
<td>None since Overhaul</td>
</tr>
<tr>
<td>Type of Last Periodic Inspection</td>
<td>75 Hr P.E.</td>
<td></td>
</tr>
<tr>
<td>Fuel (Type and octane rating)</td>
<td>PAI 523C</td>
<td>PAI 523C</td>
</tr>
</tbody>
</table>

5. Fire Data—No Inflight Fire or Explosion

To be completed when fire or chemical explosion occurs, not resulting from ground impact. indicate: F—Probable or R—Known, in squares below.

<table>
<thead>
<tr>
<th>a. Material Failure Causing the Fire</th>
<th>b. Ignition Source</th>
<th>c. Combustible Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical System</td>
<td>Propulsion System</td>
<td>Electrical System/</td>
</tr>
<tr>
<td>Fuel System</td>
<td>Other (Specify)</td>
<td>Pneumatic System</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>Pneumatic System</td>
<td>Exposures</td>
</tr>
<tr>
<td>Pneumatic System</td>
<td>Unknown</td>
<td>Fuel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. Aircraft Fire Extinguishing System</th>
<th>e. Fire/Overheat Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinguished Fire</td>
<td>Not Activated and Not Near Fire</td>
</tr>
<tr>
<td>Reduced Fire</td>
<td>If Discharged, Chemical Used</td>
</tr>
<tr>
<td>No Effect When Discharged</td>
<td>If Discharged, Amount of Chemical Used</td>
</tr>
<tr>
<td>Activated but Did Not Discharge</td>
<td>Other Information</td>
</tr>
<tr>
<td>Not Activated but Near Fire</td>
<td>Other (Specify)</td>
</tr>
</tbody>
</table>

Approved for Release 2001/08/29: COA-RDP71B00590R000100010001-4
LOCATION OF INITIAL FIRE

<table>
<thead>
<tr>
<th>Known</th>
<th>Probable</th>
<th>Known</th>
<th>Probable</th>
<th>Known</th>
<th>Probable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luggage Compartment</td>
<td>Aft of Firewall</td>
<td>Wheel Well</td>
<td>Cargo/Passenger Compartment</td>
<td>Forward of Firewall</td>
<td>Other (Specify)</td>
</tr>
<tr>
<td>Bomb Bay</td>
<td>Cockpit/Co-pilot Quarters</td>
<td>Rocket Pod</td>
<td>Engine Section</td>
<td>Tire/Wheel/Bat</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

MISCELLANEOUS CHEMICAL EXPLOSION DATA

<table>
<thead>
<tr>
<th>Known</th>
<th>Probable</th>
<th>Known</th>
<th>Probable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Ignition Occurred in an Explosive Manner Prior to Ground Impact</td>
<td>Intensity of Explosion Was Sufficient To Cause or Apprreciably Contribute to In-flight Airframe Break-Up</td>
<td>Other Significant Data (Specify)</td>
<td>Unknown or Not Available</td>
</tr>
<tr>
<td>Explosion Occurred After Fire and Before Ground Impact</td>
<td>Unknown or Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosion Occurred Subsequent to Ground Impact</td>
<td>Unknown or Not Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRCRAFT MAINTENANCE OFFICER'S ANALYSIS AND SPECIFIC ACTION TAKEN

Describe difficulties involved and relationship of the various components to the accident. Describe specific action taken. For Fire Date describe the fire and/or chemical explosion. Cover in detail any noted deficiencies, malfunctions of fire detecting and extinguishing equipment, or questionable procedures. When discussing specific equipment, give the name of manufacturer, part number, etc., and state whether or not a DR has been submitted. Include any additional information or opinion of possible value to future technical analysis of this report.

SEE INDIVIDUAL GROUP REPORTS IN TAB "X" OF THIS REPORT.

SECRET

FOR OFFICIAL USE ONLY

(Special Handling Required. See AFR 127-4)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
USAF ACCIDENT INCIDENT INDEX

TAB
A – AF FORM 711 – USAF Accident/Incident Report
B – AF FORM 711a – Ground Accident Report (Not applicable for Acft Accidents)
C – AF FORM 711b – Aircraft Accident/Incident Report
D – AF FORM 711c – Aircraft Maintenance Materiel Report
E – AF FORM 711d – Missile Accident/Incident Report
F – AF FORM 711e – Explosives Accident/Incident Report
G – AF FORM 711f – Nuclear Accident/Incident Report
H – AF FORM 711g – Life Sciences Report of an Individual
I – Unsatisfactory Report
J – Teardown Deficiency Report
K – List of Technical Orders Not Compiled With
L – AFTO Forms 781 Series
M – AF FORM 5
N – Statements
O – Rebuttals
P – Orders Appointing Inves Board
Q – Board Proceedings
R – DD FORM 175 or DD FORM 1080
S – DD FORM 365 (Wgt-Balance)
T – Private Property Damage
U – Damage to Aircraft
V – Communication – Transcripts
W – Additional Data
X – Other Forms
Y – Diagram
Z – Photos
LIFE SCIENCES REPORT OF AN INDIVIDUAL INVOLVED IN AN AF ACCIDENT/INCIDENT
SECTION A. AIRCRAFT ACCIDENT/INCIDENT

1. GENERAL
 a. Degree of Injury
 b. Injured by
 c. Aircraft Type, Model, Serial (if applicable)
 A-12 (#125)
 d. Aircraft Serial Number
 e. Duties Assigned
 f. Current Rating
 g. Age
 h. Height
 i. Weight
 j. Years of Service
 k. Activity at Time of Accident/Incident

2. MEDICAL DATA
 a. Degree of Injury
 b. Cause of Death
 c. Days in Hospital
 d. Days in Hospital
 e. Days in Treatment
 f. Days to be Lost
 g. Autopsy Report
 Yes / No
 Dr. A6725-6
 h. Cause of Death
 Multiple fractures, contusions and lacerations sustained in free fall from high altitude without benefit of deployed parachute.

3. PHYSIOLOGICAL INCIDENT
 a. Type of Incident
 b. Duration of Flight
 c. Single Flight
 d. Altitude
 e. Altitude
 f. Time of Flight
 g. Time of Flight
 h. Time of Flight
 i. Time of Flight
 j. Time of Incident
 k. Time of Incident
 l. Time of Incident
 m. Time of Incident
 n. Time of Incident
 o. Time of Incident
 p. Time of Incident
 q. Time of Incident
 r. Time of Incident
 s. Time of Incident
 t. Time of Incident
 u. Time of Incident

4. PSYCHOPHYSIOLOGICAL FACTORS
 Check only factors present. Explain the basis for your determination in Item 10. Cite all clinical and lab evidence.

 FACTOR Not Sig CONTRIBUTED TO ACCIDENT FACTOR Not Sig CONTRIBUTED TO ACCIDENT
 Aging X Pre-existing or Chronicized Comments X
 Alcohol X Other X
 Air Sickness X Fatigue (Auto-Pilot Inop) X
 Auditory Interference X O-Force X
 Body Build X Hyperventilation X
 Dizziness X Hyperventilation X
 Cardiovascular X Illness X
 Contact Lens X Language Barrier X
 Dizziness X Mixed Meals X
 Drug Use X Adequate Pain X
 Dysphoria (Specify) X
 Emotional Disturbance X
 Anxiety X
 Fear X
 Gastrointestinal X
 Hypertension X
 Infection X
 Over Confidence X
 Panic X

5. ENVIRONMENTAL FACTORS
 Check only factors present. Explain the basis for your determination in Item 10. Cite all clinical and lab evidence.

 FACTOR Not Sig CONTRIBUTED TO ACCIDENT FACTOR Not Sig CONTRIBUTED TO ACCIDENT
 Air Pressure, i.e. Rapid X
 Decompression, Pressure Loss, X
 O2, Specificity X
 Cold X
 Decon X
 Heat X
 Light X
 Noise X
 Smokes, fumes X
 Vibration X
 Weather X
 Windscreen X
 Other Related Factors, Specify X
 No Factors Present X

6. TRAINING RELATED TO THIS ACCIDENT/INCIDENT
 a. Ejection Seat Training: X
 b. Survival Training: X
 c. Firefighting Training: X
 d. Physiological Training: X
 e. AEC or Other Training: X
 f. Name of Course or OJT: X
 g. Dates Attended: X
 h. Activity Scores Applicable: X

 Approved by: (Signature) CECI-PHP
 Date: 2001/06/29

 SPECIAL HANDLING REQUIRED: See AFR 127-4

 (Special Handling Required: See AFR 127-4)
PERSONAL, PROTECTIVE AND SURVIVAL EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>EXAMPLE</th>
<th>TYPE</th>
<th>NOT AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Protection</td>
<td>P-48, HGU-6/P, HGU-6/P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Protection</td>
<td>Visor, Goggles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear Protection</td>
<td>Ear plugs, muffs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Mask</td>
<td>MKE-5/P MKE-3/P</td>
<td>Full Pressure</td>
<td></td>
</tr>
<tr>
<td>Clothing Vest</td>
<td>K-18, K-221-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothing, Survival</td>
<td>Sleeping bag, down-filled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gloves</td>
<td>B-3A, M-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footwear</td>
<td>M-1, M-2, M-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Armament</td>
<td>Seat Belt, Shoulder Harness</td>
<td>Seat Belt Fired but Failed to Open</td>
<td>X</td>
</tr>
<tr>
<td>Life Vest</td>
<td>LPV-1/P</td>
<td>Incorporated into Suit</td>
<td>X</td>
</tr>
<tr>
<td>Life Belt</td>
<td>PK-2, E-24</td>
<td>Incorporated into Seat Kit</td>
<td>X</td>
</tr>
<tr>
<td>Survival Kit, Container</td>
<td>Global, MA-1</td>
<td>Special Type</td>
<td>X</td>
</tr>
<tr>
<td>Other Signaling Devices</td>
<td>Flores, Mirrors, Whistle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>FO-2, FO-2/100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival Equipment</td>
<td>Knife, Fishing Oar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat</td>
<td>Fire, Float, Flotation, Ejector, Parachute Jammed Under Seat Headrest</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Other Equipment</td>
<td>Flashlight, etc. (Special)</td>
<td>Aux, Sur, Kit Stored in Right Leg Pocket</td>
<td>X</td>
</tr>
</tbody>
</table>

ESCAPE

a. General (Check or fill in as appropriate)
- Ejection
 - Landing Surface: Ground
 - Seat: X Strapped X Unstrapped X Non-Strapped
 - Ejector: X... X...
 - Parachute: X... X...
 - Smoke: Present
 - Other (Exp.)

b. Surface Winds, Knots
 - 0 to 30 (estimate if unit)
 - Dragged
 - Yes: X No: X
 - Difficulty releasing chute canopy: X Yes: X No: X

ESCAPE

a. Altitude of Aircraft
 - Slight
 - Seated, Separated, Functioned, and the Automatic Lap Belt Fired but Failed to Release
 - Altitude above Surface: 3200
 - Approx 3000

b. Difficulties Before Ejection: Yes: X No: X
 - Parachute Jammed Under Seat Headrest

SEAT AND/OR SURVIVAL

a. Seat Adjustment Controls
 - Did Not Separate: X No: X
 - Other (Exp.)
 - Parachute Jammed Under Seat Headrest

RECOVERY

a. Type Parachute: X
 - canopy release: Single: X
 - Double: X
 - Parachute equipped with time delay
 - connected to dingie: X
 - Automatic parachute deployed, and pulled when pilot separated from canopy
 - Jammed under seat headrest

MEDICAL OFFICER'S RATIONALE, COMMENTS

This section is to include comment on medical, personal, societal, family, industrial hygiene and allied factors in incident causation, and a description and analysis of the factors in injury causation. Injuries should be correlated with the performance of personal equipment, malfunctions and failures of structures, systems, etc. Pertinent contributing factors in items A through G should be commented upon. Include X-ray and laboratory findings. Pertinent recommendations are encouraged.

See attached Flight Surgeon's Comments.

25X1A
USAF ACCIDENT INCIDENT INDEX

TAB
A - AF FORM 711 - USAF Accident/Incident Report
B - AF FORM 711a - Ground Accident Report (Not applicable for Acft Accidents)
C - AF FORM 711b - Aircraft Accident/Incident Report
D - AF FORM 711c - Aircraft Maintenance Materiel Report
E - AF FORM 711d - Missile Accident/Incident Report
F - AF FORM 711e - Explosives Accident/Incident Report
G - AF FORM 711f - Nuclear Accident/Incident Report
H - AF FORM 711g - Life Sciences Report of an Individual
I - Unsatisfactory Report
J - Teardown Deficiency Report
K - List of Technical Orders Not Complied With
L - AFTO Forms 781 Series
M - AF FORM 5
N - Statements
O - Rebuttals
P - Orders Appointing Inves Board
Q - Board Proceedings
R - DD FORM 175 or DD FORM 1080
S - DD FORM 365 (Wgt-Balance)
T - Private Property Damage
U - Damage to Aircraft
V - Communication - Transcripts
W - Additional Data
X - Other Forms
Y - Diagram
Z - Photos
A-12 SERVICE BULLETIN/S.A.M. STATUS

<table>
<thead>
<tr>
<th>Bulletin Number</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>285</td>
<td>OUTBD ELEVON DOWN SPRING</td>
<td>30 Mar 66</td>
</tr>
<tr>
<td>890</td>
<td>LOWER FILLETS</td>
<td>7 Mar 66</td>
</tr>
<tr>
<td>974</td>
<td>REDUCED TVL PITCH TRIM ACT</td>
<td>18 Jan 66</td>
</tr>
<tr>
<td>976</td>
<td>AFT BYPASS DOOR WIRESHIELD</td>
<td>16 Aug 65</td>
</tr>
<tr>
<td>987A</td>
<td>SPIKE ACTUATOR SWITCH</td>
<td>31 May 66</td>
</tr>
<tr>
<td>987D</td>
<td>FLEX LINES</td>
<td>31 May 66</td>
</tr>
<tr>
<td>987F</td>
<td>TERMINAL STRIPS</td>
<td>31 May 66</td>
</tr>
<tr>
<td>1006</td>
<td>IFR INTERPHONE</td>
<td>24 Jun 66</td>
</tr>
<tr>
<td>1025</td>
<td>NOSE TRANSPONDER INSTALL</td>
<td>24 Mar 66</td>
</tr>
<tr>
<td>1035</td>
<td>ALTITUDE RECORDING MOD</td>
<td>19 Apr 66</td>
</tr>
<tr>
<td>1041-4</td>
<td>SAS HARNESS REPL</td>
<td>24 May 66</td>
</tr>
<tr>
<td>1052</td>
<td>HYD SWIVEL PLUMBING</td>
<td>19 Aug 66</td>
</tr>
<tr>
<td>1061</td>
<td>RELOCATE FUEL SHUT-OFF VALVES</td>
<td>13 Sep 66</td>
</tr>
<tr>
<td>SAM 115</td>
<td>COMP INLET PRESS IND WIRE</td>
<td>8 Mar 66</td>
</tr>
<tr>
<td>SAM 150</td>
<td>DIODE SUPPORT COVER</td>
<td>16 Aug 66</td>
</tr>
<tr>
<td>SAM 153</td>
<td>ALTERNATOR CHANGE</td>
<td>21 Sep 66</td>
</tr>
<tr>
<td>SAM 162</td>
<td>SEALING Q-BAY HELIUM LEAKS</td>
<td>2 Nov 66</td>
</tr>
<tr>
<td>SAM 165</td>
<td>SLIP INDICATOR</td>
<td>8 Nov 66</td>
</tr>
<tr>
<td>SAM 167</td>
<td>ACCESS HOLE - STUB FIN</td>
<td>15 Nov 66</td>
</tr>
<tr>
<td>SAM 171</td>
<td>ATTACHMENTS GEAR BOX ACCESS DOOR</td>
<td>14 Dec 66</td>
</tr>
</tbody>
</table>

SECRET

FOR OFFICIAL USE ONLY

(Special Handling Required. See AFR 127-4)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
USAF ACCIDENT INCIDENT INDEX

<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AF FORM 711 - USAF Accident/Incident Report</td>
</tr>
<tr>
<td>B</td>
<td>AF FORM 711a - Ground Accident Report (Not applicable for Aft Accidents)</td>
</tr>
<tr>
<td>C</td>
<td>AF FORM 711b - Aircraft Accident/Incident Report</td>
</tr>
<tr>
<td>D</td>
<td>AF FORM 711c - Aircraft Maintenance Material Report</td>
</tr>
<tr>
<td>E</td>
<td>AF FORM 711d - Missile Accident/Incident Report</td>
</tr>
<tr>
<td>F</td>
<td>AF FORM 711e - Explosive Accident/Incident Report</td>
</tr>
<tr>
<td>G</td>
<td>AF FORM 711f - Nuclear Accident/Incident Report</td>
</tr>
<tr>
<td>H</td>
<td>AF FORM 711g - Life Sciences Report of an Individual</td>
</tr>
<tr>
<td>I</td>
<td>Unsatisfactory Report</td>
</tr>
<tr>
<td>J</td>
<td>Teardown Deficiency Report</td>
</tr>
<tr>
<td>K</td>
<td>List of Technical Orders Not Complied With</td>
</tr>
<tr>
<td>L</td>
<td>AFTO Forms 781 Series</td>
</tr>
<tr>
<td>M</td>
<td>AF FORM 5</td>
</tr>
<tr>
<td>N</td>
<td>Statements</td>
</tr>
<tr>
<td>O</td>
<td>Rebuttals</td>
</tr>
<tr>
<td>P</td>
<td>Orders Appointing Inves Board</td>
</tr>
<tr>
<td>Q</td>
<td>Board Proceedings</td>
</tr>
<tr>
<td>R</td>
<td>DD FORM 175 or DD FORM 1080</td>
</tr>
<tr>
<td>S</td>
<td>DD FORM 365 (Wgt-Balance)</td>
</tr>
<tr>
<td>T</td>
<td>Private Property Damage</td>
</tr>
<tr>
<td>U</td>
<td>Damage to Aircraft</td>
</tr>
<tr>
<td>V</td>
<td>Communication - Transcripts</td>
</tr>
<tr>
<td>W</td>
<td>Additional Data</td>
</tr>
<tr>
<td>X</td>
<td>Other Forms</td>
</tr>
<tr>
<td>Y</td>
<td>Diagram</td>
</tr>
<tr>
<td>Z</td>
<td>Photos</td>
</tr>
<tr>
<td>DATE</td>
<td>TIME WORKED</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>16-12 A-7</td>
</tr>
</tbody>
</table>

SECTION I

CLASSIFICATION OF INSTRUCTOR AND FIRST PILOT

<table>
<thead>
<tr>
<th>DAY</th>
<th>YR</th>
<th>WEATHER</th>
<th>YR</th>
<th>WEATHER</th>
<th>HOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLASSIFICATION OF COMMAND AND/OR CO-PILOT

<table>
<thead>
<tr>
<th>DIM</th>
<th>YR</th>
<th>WEATHER</th>
<th>YR</th>
<th>WEATHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

TOTALS FOR THIS SHEET

TOTALS TO DATE

Approved For Release 2001/08/29: CIA-RDP710005792K00300133S001-1

SECRET

FOR OFFICIAL USE ONLY

Special Handling Required. See AFR 177-7.
PILOT INDIVIDUAL FLIGHT RECORD

SECTION III - SUMMARY OF PILOT EXPERIENCE

<table>
<thead>
<tr>
<th>DUTY</th>
<th>SINGLE ENGINE</th>
<th>TWO ENGINES</th>
<th>MORE THAN TWO ENGINES</th>
<th>SINGLE JET PROPULSION</th>
<th>MULTI-JET PROPULSION</th>
<th>JET ROCKET</th>
<th>ROCKET</th>
<th>ROTARY WING TYPE</th>
<th>TURBO-FRIG</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td>Instructor Pilot</td>
<td></td>
</tr>
<tr>
<td>First Pilot</td>
<td></td>
</tr>
<tr>
<td>Command Pilot</td>
<td></td>
</tr>
<tr>
<td>C/N Pilot</td>
<td></td>
</tr>
<tr>
<td>Aircraft Commander</td>
<td></td>
</tr>
<tr>
<td>Total Use of Rate Time</td>
<td></td>
</tr>
<tr>
<td>Combat Time</td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>C/N</td>
<td></td>
</tr>
<tr>
<td>Total Combat Time</td>
<td></td>
</tr>
<tr>
<td>AF Student Pilot Time</td>
<td></td>
</tr>
<tr>
<td>Civilian</td>
<td></td>
</tr>
<tr>
<td>Foreign Military</td>
<td></td>
</tr>
<tr>
<td>Other U.S. Military</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: (If outside of space allowed)
PILOT INDIVIDUAL FLIGHT RECORD

TYPE: (Aircraft registration number)

DATE: (Date of completion)

APPROVED FOR RELEASE: (Official release date)

<table>
<thead>
<tr>
<th>DATE</th>
<th>TYPE</th>
<th>MODEL</th>
<th>SERIES</th>
<th>CLASSIFICATION</th>
<th>AIRCRAFT</th>
<th>COMMANDER TIME</th>
<th>CLASSIFICATION OF AIRCRAFT COMMANDER TIME</th>
<th>APPROACHES</th>
<th>INSTRUMENT TRAINERS</th>
<th>FLIGHT SIMULATORS</th>
<th>PRECIPITATION</th>
<th>AA</th>
<th>WET</th>
<th>DRY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SECTION III - SUMMARY OF PILOT EXPERIENCE

<table>
<thead>
<tr>
<th>DUTY</th>
<th>SINGLE ENGINE</th>
<th>TWO ENGINES</th>
<th>MORE THAN TWO ENGINES</th>
<th>SINGLE JET PROPULSION</th>
<th>MULTI-JET PROPULSION</th>
<th>JET ROCKET</th>
<th>ROCKET</th>
<th>ROTARY WING TYPE</th>
<th>CLINIC</th>
<th>TURBO-PROP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

AFH 60-1 Compiled 1ST Half FY 67, P58A 1A 1 Jan 61

14 Dec 66 Completed Inst Evaluation Flt Check in F101A, 266 Inst rating No. 1,

Approved For Release: 2601090526; DA-ORD-72-00626; R00100010001-4

FOR OFFICIAL USE ONLY

SECRET

For data recording

FOR USE ONLY

FRED W. HOBBS, FLIGHT SIM

SECRET

CNSN 258-127-4
USAF ACCIDENT INCIDENT INDEX

TAB
A — AF FORM 711 — USAF Accident/Incident Report
B — AF FORM 711a — Ground Accident Report (Not applicable for Acft Accidents)
C — AF FORM 711b — Aircraft Accident/Incident Report
D — AF FORM 711c — Aircraft Maintenance Material Report
E — AF FORM 711d — Missile Accident/Incident Report
F — AF FORM 711e — Explosives Accident/Incident Report
G — AF FORM 711f — Nuclear Accident/Incident Report
H — AF FORM 711g — Life Sciences Report of an Individual
I — Unsatisfactory Report
J — Teardown Deficiency Report
K — List of Technical Orders Not Compiled With
L — AFTO Forms 781 Series
M — AF FORM 5
N — Statements
O — Rebuttals
P — Orders Appointing Inves Board
Q — Board Proceedings
R — DD FORM 175 or DD FORM 1080
S — DD FORM 365 (Wgt-Balance)
T — Private Property Damage
U — Damage to Aircraft
V — Communication — Transcripts
W — Additional Data
X — Other Forms
Y — Diagram
Z — Photos
STATEMENT
25X1A
Name: [Redacted]

AFSC or Job Title: Flt Test Engineer

Accident - Model A-12, #125, 5 Jan 67

Accident/Incident

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age: 40

Assigned Duty: Aircraft Engineer

Date: 9 January 1967

Duty Phone: 3331

Grade: Civilian

Organization or Address: [Redacted]

During the morning prior to Flight 204, aircraft operations consisted of routine cockpit setup, nav system alignment, and final pre-flight checklist verifications. I made weight and balance calculations, and reviewed the Aircraft 781, work order book, and Engineering Items documentation for uncompleted work. Shortly before 1030 I arrived at the briefing room. I was somewhat surprised to see that [Redacted] was to be the pilot. I had been informed on the previous day that [Redacted] was scheduled for Flight 204. I had discussed with him a procedure to obtain additional in-flight information concerning our problem with popping the left hand aft bypass door circuit breaker. However, I related the instructions to [Redacted]. He repeated them back to me and apparently understood what information was desired. Prior to the start of the formal briefing, we also discussed an oxygen system leak which had been entered as an open 781 item. I told him that the leak was 80 PSi in 8 minutes somewhere between the control panel and suit disconnects and that this should not affect the normal breathing pressure regulation nor system usage. He agreed and shortly thereafter the recorded briefing was started. I noticed no unusual circumstances throughout the briefing.

I returned to Hangar 10 at 1110. The pilot transportation arrived at approximately 1120. Personal equipment hook up was apparently routine. [Redacted] coverage of the aircraft checklist was per standard procedures and no discrepancies were reported. Engine starts and pre-taxi operations were normal. I disconnected from the intercom when the airplane was ready for taxi. The crew chief then directed a special procedure of towing the airplane backward out of the hangar to a point where taxi was to be initiated. This operation was a one-time feasibility demonstration. Towing equipment was disconnected. [Redacted] started the taxi with a 180° turn to the north and then proceeded to runway 32. Engine trim checks were 816° left and 814° right with 815° as target. Takeoff was on schedule with both afterburners normal.

Following takeoff I had no further knowledge of the flight until 1555. Anticipating the return of the aircraft, I turned on the radio of our mobile vehicle and the first communication I heard was Boxer 17 reporting that he had Dutch 45 at 90 miles out. Someone in the mobile mentioned a prior report of 45 returning low on fuel. I then heard [Redacted] report that the engines were getting erratic and that he would stay with it till they quit. The last transmission I heard was "The engines have flamed out. I'll be leaving the airplane here". I then returned to my office to await further developments.

SECRET
I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident/incident, and in the interest of accident prevention to preclude recurrence, I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 30-2 or for use before a flying evaluation board.

Article 125 had just come out of Phase I inspection, at which time we made a normal inspection of the aircraft per Code 20. This inspection included check-out of various systems and replacement of 781 due date items, change of hydro filters, lubrication, SAS 21 day control check and change of seat initiators. The latter was accomplished by a qualified and authorized seat specialist. All work was accomplished by a CED, ship electrician, working to Code 23. At this time we worked S/B 1033, Physical Science Connectors (Electrical); S/B 1061, Change Position of Refuel Pilot Valves (Structure, Plumbing and Electrical); S/B 1006, Consolidated Interphone Installation (Electrical).

Inspection found several cracks in L/H Nacelle which were repaired per SCAP 59. The L/H Forward Bypass Actuator was replaced at this time. All work was completed satisfactorily with strict adherence to all inspection codes, and procedures. Functional Test Flight was made on Dec. 30, and was successful. Ship came back with a chattering brake and two (2) radio squawks. At the end of this flight it was noticed that C/B was popped on L/H bypass door. Corrective action was taken on this and the position switch was replaced. The two (2) wires to indicator lights were disconnected to determine if the trouble could have been in this area.
Postflight activities continued normally during this time. We started
the Preflight Wednesday morning, 4 Jan 1967, and checked all systems per Code
2.

We pulled out of the hangar at 1100 and moved to the E1 Bldg. and
installed the 337 Bulkhead door and removed the "Q" Bay ballast. The package people installed Type I package and "Q" Bay was closed. We moved in front of Hangar 10, facing South.

At this time we performed T.E.B operations on both engines. This was accomplished by Ground Handling personnel with a Fire Dept. crew standing-by. L.O.X. was filled to ships Oxygen system by then filled the chine evaporator tanks with Methonal. The Day Shift was over at 1730 and Swing Shift fueled the ship and added N2.

We, the Day Shift, came to work at 0630 and we finished the preflight on the morning of the flight of 5 Jan 1967.

This ship was ready for flight 1030 and Electrical check-out of cock-pit was made per Code 23 by ship electrician, and The ship was ready for flight with three (3) open squawks in the 781: the main fuel filters were due for change, after tanks being open, console panel light and flood light were inoperative. Engineering determined these lights were only used for night flight and these open items were not detrimental to flight and the pilot was briefed on these open items. The ship was parked in Hangar 10, facing South. We were to simulate an after tow out of the hangar after engine start. A tow bar was hooked to the L/H main landing gear. The personnel equipment people came and installed the seat pack, polished the canopy and windshield glass.

The projector people came and installed the projector and the nose cover was installed.

The pilot arrived and was installed by the P.E., people was on the headphones for engine starts, was located in the Tow Vehicle which was attached by a tow bar to the aft of the aircraft, prior to pull out. was working the forward end of ship closing INS peep-hole and AG Bay covers - after engine starts. was attending the L/H engine assisting with the removal of the starter and closure of the starter access door. was assisting the removal of the starter endoester decomposition after R/H engine start.
was in attendance to keep interphone system hooked-up
and remove the outside power prior to aft tow. (Electrician
on Article 124) assisted with interphone cord to the aft tow vehicle.
Engines were started.

Check out of steering, flight controls, and engineering instructions
were completed. Engineer then removed the canopy safety pin, "D" Ring
pin and turned on dictaphone recorder. Engineer showed these pins on the
stand and the canopy was then closed. # removed the stand and the
pilot was instructed to disengage the nose steering. INS people removed
their equipment and package people removed covers from the lower hatch.

pilot and myself were on the intercom
system. # was given the signal to start aft tow and # was
steering the nose wheel with a steering bar. # was walking chock
on L/H side and # was walking chock on the R/H side. We moved
the ship backwards approximately 100 yards, # walked under
the aft center section and when the aft tow was completed they assisted in
removal of the tow bar. # installed wheel chocks and # and I removed the steering bar. Pilot was instructed to engage nose steer-
ing and apply brakes. After this was completed # removed and stowed
all interphone cords. Crew moved to left of ship to the Mobile Unit driven
by # gave pilot the "remove chocks" signal and
to the trim run area where # installed the chocks. Pilot
made his trim runs and called for removal of chocks.

Ship started to roll and afterburner came on and ship was normal in
all respects before and after take-off.
I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Assigned Duty: Training Mission from Nellis AFB

During a normal training flight, in F105 aircraft, from Nellis AFB, Nevada, on 5 January 1967, I was called by the Nellis Command Post and instructed to fly into the vicinity of Caliente to aid a ground party searching for the site of an F-4C crash. I was the pilot in the rear cockpit of my aircraft. We encountered frontal type weather in the crash area and were unable to locate the F-4C. The bases of the clouds were 9 to 10,000 ft MSL. The tops of the clouds were about half hour prior to this time was about 16,000 ft. While in the Caliente area trying to find the crash site we were in a right turn at approximately 8,000 to 9,000 feet passing through a southeasterly heading when I saw a long slender object, trailing what appeared to be white vapor, come diving out of the overcast and crash. The time of the crash was around 1600 local. The object was heading northwest and diving at an angle close to 60 degrees. At impact a large ball of gray smoke began to rise but was quickly blown to the south and dissipated. The impact area was describable only by the five or six bright fires that were widely scattered. Slightly south of the area we climbed for altitude and got a TACAN fix off of Las Vegas (LAS) channel 116. TACAN bearing was 010 degrees for seventy six nautical miles. I contacted Las Vegas Approach and reported the sighting as possibly being an F-105 or a rocket.
The following is a statement of circumstances pertaining to the air refueling of DUTCH 45 and BOXER 17 on 5 January 1967 in the Yuletide Special Operating Area (SOA). The 903rd Air Refueling Squadron tanker conducting the refueling was CUTE 57, Tail Number 50-0103. The aircrew was S-129: AC - Thomas, Clarence W., Lt Col; CP - Curd, James L., 1st Lt; Nav - Davis, Melvin R., Maj; and BO - McCabe, George M., SSgt.

CUTE 57 was scheduled for a point parallel, Comm #3 rendezvous on Hawk Bravo Track with a scheduled control of 05/2200Z, with a scheduled offload of 60M for DUTCH 45. No offload was scheduled for BOXER 17. Refueling altitude was FL 300 with a climbing A/R to FL 330. Primary A/R frequency was Channel 17; secondary A/R frequency was Channel 7 (Bungalow Control).

CUTE 57 entered the Yuletide SOA at 05/2124Z. An unsuccessful attempt was made to contact Bungalow on Channel 7. However, contact was established on Channel 8. Rebold was contacted on HF primary frequency and given an ETA to on station. We arrived at the ARCP at 05/2134Z and established a normal orbit at FL 310. Rebold was again contacted and provided with a normal on-station report. During the orbit, Rebold called and asked how much special fuel we had on board. Rebold was advised that we had 65,000 pounds of special; 60,000 for DUTCH 45 as briefed, and 5,000 extra. Rebold acknowledged and stated that the secondary was BOXER 17 and that they did not know if he would require any fuel.

DUTCH 45 DME readouts were first observed at 169 NM, and he called us 150 NM out on Comm #3 (Channel 17) for a radio check. The rendezvous was continued, and during the final turn from point Alpha to the ARCP, BOXER 17 called on Channel 8 and stated that he had to have some fuel right away or he would be forced to leave the Area. My co-pilot advised him that we had about 14 M pounds extra and he stated that that would be sufficient. At approximately half way through this final turn, BOXER 17 made contact at orbit speed and fuel transfer was initiated. He continued taking fuel until we rolled out over the ARCP at 05/2206Z. At that time, DUTCH 45 was at our 6 o'clock position at 1 NM. We advised BOXER 17 to get off of the boom so that we could descend and accelerate for DUTCH 45. BOXER 17 asked how much fuel he had taken and my co-pilot advised him that it was 3500 pounds. He stated that this was sufficient and cleared the boom. A descent and acceleration to FL 300 and 320 KIAS was accomplished. Bungalow then called us on Channel 8 and said that DUTCH 45 was calling us on Channel 7. We contacted DUTCH 45 on Channel 7 and he stated that he wanted his fuel right now. The boom operator
cleared him in and normal fuel transfer was initiated at 05/2209Z. We asked DUTCH 45 how the rendezvous looked and he said that it looked real good. He further stated that he had used a new type of descent and had used more fuel than planned. DUTCH 45 then requested that we use the boom interphone which we remained in until the end of refueling.

The refueling continued normally and at approximately halfway through, DUTCH 45 asked how much fuel he had taken and he was advised that it was 38000 pounds. He stated that he showed 43000 pounds. We do not know whether this 43000 pounds was what he showed as transferred or whether it was the total fuel he had on board his aircraft. Fuel transfer was continued and at 6 minutes prior to end A/R, I advised DUTCH 45 that I was initiating a climbing flight path to arrive at the end A/R point at PL 330. DUTCH 45 asked if this was a new procedure. I stated that it was a scheduled climbing A/R and asked if he wanted me to climb or stay at PL 300. He said to go ahead and climb and that he would "give it a try." A climbing flight was then initiated and we immediately encountered light turbulence. DUTCH 45 stated that he could not take much of this and dropped off of the boom. Contact was re-established at approximately PL 310 after the turbulence had diminished. Fuel transfer was continued and at approximately one minute prior to end A/R DUTCH 45 asked how much fuel he had received. We advised him that we had given him 61,000 pounds. He said that he was about 4000 pounds short and we told him that our tanks were dry and we had transferred all of our fuel. He then asked how long to end A/R and we advised him that we had just passed over the end A/R point (Current VOR) at PL 350. End A/R was at 05/2232Z.

DUTCH 45 cleared off of the boom and contacted Bungalow and informed them that he was about 4000 pounds short of fuel and that he would have to cut his turning point short. Bungalow acknowledged and asked if he wanted this information relayed to the appropriate agencies to which he replied in the affirmative. He then jokingly commented that he was kind of happy that he had to cut it short because the auto-pilot was inoperative and he had been hand flying it all day and was tired. We completed the normal offload report and heard BOXER 17 tell DUTCH 45 that he looked normal. This was the last we heard from either receiver. We then proceeded to the exit point at PL 330 and exited the Yuletide SOA at 05/2248Z. The remainder of the mission was flown as briefed.

During fuel transfer, there was no fuel siphoning or spillage observed. The following are fuel tank and offload totalizer readings for the refueling.
<table>
<thead>
<tr>
<th>Tank Gauge Readings</th>
<th>Totalizer Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOXER 17</td>
<td></td>
</tr>
<tr>
<td>Before A/R</td>
<td>64.3 M</td>
</tr>
<tr>
<td>End A/R</td>
<td>60.0 M</td>
</tr>
<tr>
<td>Offload</td>
<td>4.3 M</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DUTCH 45</td>
<td></td>
</tr>
<tr>
<td>Before A/R</td>
<td>60.0 M</td>
</tr>
<tr>
<td>End A/R</td>
<td>60.0 M</td>
</tr>
<tr>
<td>Offload</td>
<td></td>
</tr>
</tbody>
</table>

3,600 lbs.

61,180 lbs.

CLARENCE W. THOMAS, Lt Col, USAF
903rd Air Refueling Squadron
Beale Air Force Base, California

6 January 1967
I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

I was initial chase pilot (BOXER 17) for Dutch 45. Everything was normal from take-off to air refueling contact with CUTE 57. Prior to contact with Dutch 45, I off-loaded 4000 lbs from CUTE 57 because I was 500 lbs above Bingo. Dutch 45 refueled off-loading briefed plus 1000 lbs, but stated that he was still 5000 lbs short of being full of fuel that he would proceed expecting to turn short of planned route. Dutch 45 then proceeded on course, everything appearing normal.

I returned to the field and landed at 1450.
STATEMENT

Date: 9 January 1967
Duty Phone: 3387

Name:
AFSC or Job Title: Chief, Ops & TNG Div
Grade:
Organization or Address:

Accident/Model A-12, #125, 5 Jan 67
Accident/Incident

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or lines-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age: 40
Assigned Duty: Recovery Chase Pilot
Flying Experience: Total F-101 Time: 916.45 Total Flying Time: 4278.25

I,
do hereby make the following statement concerning the accident which occurred on 5 January 1967, involving Dutch 45.

I was assigned to fly an F-101B (call sign Boxer 17) type aircraft as recovery chase for Dutch 45. My responsibility was to intercept him prior to his landing, make a visual check of his aircraft, advise him of any discrepancies noted, and assist him as necessary. My take-off was on schedule at 1530 hours and I was at Flight Level 210 orbiting the station standing by for word on his position. I had received his estimated time of arrival as 1605 from the Command Post while taxiing out for take-off. I had requested the tower to advise GGA that I was on Channel 2 and to notify me when they had Dutch 45 inbound.

The first word that I received was that Dutch 45 was inbound, low on fuel, and on a southwest radial and DME off the Bryce Canyon VORTAC. I don't remember these figures specifically, however, I do remember plotting the approximate position on my map and computing the radial as 075 degrees from the Jenks TACAN. I was heading west at the time and immediately turned eastward, made my computations, set 075 degrees in my ID 249 indicator, and requested the tower to find out if he was still high and fast. I also asked the tower to see if the ranges were clear. During the turn eastward I noticed a westbound contrail that looked like that of a aircraft descending. As I rolled out 075 degrees this contrail was directly in front of me and I was sure that it was that of Dutch 45. I advised the tower that I had him in sight, and proceeded East. We were closing head on as he was directly out my windshield. His contrail was very clear and obviously in a descending flight path that appeared to be normal. I still had not heard from the tower about his speed, but, from his appearance drew the conclusion that it was a normal descent. As I reached the point where I believed that I should begin a turn to make my intercept I noticed that I was then approximately fifty miles East on the 075 radial. I made a tight turn of approximately 225 degrees to the left.
As is quite common, I had fully expected to loose his contrail during my turn while he continued his descent, however, I rolled out of my turn shortly after I spotted him over my left shoulder still coming. I still could not see the aircraft and it appeared as though he was slower than normal or I had misjudged my first turn, so I turned back left into him again. About this time Dutch 45 came up on Channel 2 and called the tower saying that he was on the 080 radial at 100 miles (or 100 radial 80 miles I don’t recall) and the engines were surging but he would stay with it till they quit. By this time I had again rolled out with him dead ahead in my windshield. This was the first indication I had concerning how serious his problem was. I advised him I had him in sight and his heading on both was good. Shortly thereafter he responded that they both quit and he was leaving the airplane. The airplane was just a black speck at this time at what I would estimate to be 10 to 15 miles ahead. I couldn’t see a sign of an ejection, I did notice that the contrail had stopped completely, and I estimated his altitude to be between 30 and 35 thousand, closer to 30. I was still at FL210. I tried to call him in an attempt to request him to stay until I got closer but received no answer. I continued East mainly looking for signs of the ejection and at the same time watching the aircraft as it approached me still dead ahead, absolutely wings level and nose over very slowly into an ever increasing nose down attitude. When the aircraft disappeared into the top of the clouds it was absolutely intact, not trailing any smoke or fuel that I saw, still wings level and in what I would estimate to be a 60 degree dive. It was just in front of me at what I estimated to be two miles and I centered my GDI and read the 075 or 076 radial and 60 DME. I added the two miles and I believe I called the position to the tower. In any case I was still most interested in the pilot and continued east to a point under the end of the Contrail where I let down to below the clouds and I looked for signs of the pilot. I’m not sure whether or not I gave this position to the tower, but, I remember drawing a circle on my map true north of Norman Mesa about thirty miles. I thought my descent would have been fast enough for me to still pick him up floating down in his parachute and I was looking for this listening for his beacon. I remember rechecking my ARC 34 on both and even going to Guard manually once to listen for a beacon signal. I looked around for him until the thought struck me about reporting back to the tower that I hadn’t located him and was sure he was down. I was at too low an altitude to raise the tower and the weather had deteriorated to the point where I was having difficulty maintaining VFR. I climbed back out and reported to the tower that I saw no signs of the pilot and was proceeding to the point where I reported the aircraft dove into the clouds. I noticed the cloud tops to be at 18,000 as I climbed back out. I made a descending spiral at the Tacan fix that I reported previously, however, leveled out at 10,000 feet indicated as I was still on solid instruments. I climbed back out to the west as I thought I would get better weather quicker that direction. I finally found a place where I could let down and proceeded to the area of my roughly plotted 075/62 Tacan fix. I was in the vicinity of Delamar Lake and the weather wasn’t too bad in the valleys, however, it was impossible to go over the ridges VFR. I continued searching and soon heard other Boxer aircraft talking to each other about where the aircraft had gone in. Their seemed to be lots of confusion about positions and I tried to advise them of what I observed. The weather was moving east rapidly and I stayed in the area as long as I could then returned home.

25X1A

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
STATEMENT

The following is a statement of circumstances pertaining to the air refueling of DUTCH 45 and BOXER 17 on 5 January 1967 in the Yuletide Special Operating Area (SOA). The 903rd Air Refueling Squadron tanker conducting the refueling was CUTE 62, Tail Number 58-112. The aircrew was R-126: AC - Bristow, Billy E., Major; CP - Gemlich, Stephen L., 1st Lt; Nav - Mackin, Paul C., Capt; and BO - Chope, George (NMI), TSgt.

CUTE 62 was scheduled for a point parallel, Comm #3 rendezvous on Falcon 350 with a scheduled control time of 05/20/15Z, with a scheduled offload of 31M for DUTCH 45 and 7M for BOXER 17. Refueling altitude was FL 300. Primary A/R frequency was Channel 17; secondary A/R frequency was Channel 7 (Bungalow Control).

CUTE 62 entered the Yuletide SOA at 05/19/62, FL 290. Rebold was notified as required although HF transmissions were difficult. An attempt was made to contact Bungalow on Channel 7, however, there was negative contact so an attempt was made on Channel 8 and contact was established as required.

CUTE 62 had a malfunctioning APR-59 and could not pick up receiver's beacon. Air-to-air TACAN was not locking onto receiver's equipment and Comm 3 equipment was not locking on properly. Therefore, an ARPA-25 rendezvous was the only alternative left. CUTE 62 crossed the ARGcp at 05/20/04Z as scheduled. A momentary Comm 3 lock on indicated the receiver was at 69 NM. However, an ARPA-25 rendezvous was accomplished with DUTCH 45 due to the normal rendezvous equipment malfunctions as stated previously. DUTCH 45 was in pre-contact position at 05/20/17Z and initial contact was established at 05/20/18Z. At approximately 05/20/27Z DUTCH 45 requested that fuel transfer be stopped. Approximately 28,000 lbs. of fuel was offloaded at this time. Fuel transfer was resumed at approximately 05/20/31Z. End air refueling point was at 05/20/32Z. DUTCH 45 advised that he had his briefed offload, DUTCH 45 advised CUTE 62 to keep pumping because he could take 3,000 or 4,000 lbs. more fuel. Refueling was continued until 05/20/35Z (10 NM beyond scheduled end air refueling point). DUTCH 45 was advised that he had unloaded 36,000 lbs. of fuel according to the offload totalizer of CUTE 62. According to the individual fuel tank gauge readings only 35,000 lbs. of fuel was offloaded. Just prior to final disconnect with DUTCH 45, he advised CUTE 62 it looked like he had unloaded about all he could take. The offload fuel flow rate of CUTE 62 at this time was between 2,000 and 2,000 lbs. per minute. DUTCH 45 disconnected and departed on course with no indication of any problem.
Secondary receiver (B-17) made contact at 05/20362 and unloaded 7,180 lbs. of fuel according to the offload totalizer of CUTE 62. Individual fuel tank gauges indicated 7,100 lbs. were offloaded, B-17 disconnected and departed at 05/20392 to continue his mission.

CUTE 62 continued on his mission departing the Yuletide EOA at 05/21012.

During fuel transfer, there was no fuel siphoning or spillage observed. The following are fuel tank and totalizer readings for the refueling:

<table>
<thead>
<tr>
<th>Tank Guage Readings</th>
<th>Offload Totalizer Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUTCH 45</td>
<td></td>
</tr>
<tr>
<td>Before A/R</td>
<td>49.5 M</td>
</tr>
<tr>
<td>End A/R</td>
<td>24.5 M</td>
</tr>
<tr>
<td>Offload</td>
<td>35.0 M</td>
</tr>
<tr>
<td></td>
<td>36,000 lbs.</td>
</tr>
<tr>
<td>BOXER 17</td>
<td></td>
</tr>
<tr>
<td>Before A/R</td>
<td>14.5 M</td>
</tr>
<tr>
<td>End A/R</td>
<td>7.4 M</td>
</tr>
<tr>
<td>Offload</td>
<td>7.1 M</td>
</tr>
<tr>
<td></td>
<td>7,180 lbs.</td>
</tr>
</tbody>
</table>

SIGNED

HILLY E. BRISTOW, Major, USAF
903rd Air Refueling Squadron
Beale Air Force Base, California

8 January 1967
SUBJECT: Statement concerning Dutch-45 and Bungalow.

At approximately 0006Z, 5 Jan 67 I identified D-45 northbound through
the tunnel. Normal procedures were followed concerning advisories to
Salt Lake Center while D-45 was joining his tanker. At approx. 2012
his clearance was received from Salt Lake and I relayed it to D-45.

At approx 2140 I observed D-45 westbound in the Denver area. He entered
the Yuletide North 1 and tracked towards his tanker. When he was in
close proximity to his tanker I heard him calling the tanker on Channel
7. His tanker at this time was on Channel 8 so I transmitted to D-45
that his tanker was on 8 and that I would advise the tanker to go to
Channel 7. His tanker then came up on Channel 7 and established com-
unications with D-45. In the process of joining up with his tanker I
heard D-45 make a transmission to the effect, "I tried a new descent
and it ran me short of gas". At approximately 2212Z I received clear-
ance from Salt Lake for D-45 second leg of flight. I relayed this to
D-45. While D-45 was refueling for his second leg of flight I received
a request from Yuletide to get his connect, disconnect and off-load
report. I received this from the tanker and relayed it to Yuletide.

This information was connect-2209, disconnect 2228, off-load briefed
plus 1. After D-45 disconnected from the tanker and started eastbound
I handed him off to Salt Lake at approx 2232. As I was about to hand
him off he advised me that he would probably have to cut this route
short but he didn't know how much at the present time. I asked him
if he wanted this information relayed along with his connect and dis-
connect time and he replied affirmative. At approx 2240Z Salt Lake
advised me that D-45 had reported moderate turbulence climbing east-
bound in Yuletide east between F1, 470 and 540. This information was
passed to Yuletide. At approx 2302 I observed a 4400 Squawk 200 miles
east of Cedar City which appeared to be D-45. I followed this aircraft
on radar and its track appeared to be direct towards Yuletide. At
approx 2348 Yuletide advised me that D-45 might be having some dif-
culty and asked me to check with Salt Lake, which I did immediately.
Salt Lake advised that they were not working him and they would check
and call back. At approx 2351 Salt Lake called me and advised that
D-45 reported very low on fuel and didn't know if he would make it or
not, also that he was working xxx ZIA Center. At this time I began
marking D-45's track on the radar indicator overlay, this track as
marked begins at Cedar City VORTAC 117/46. His track continued to be
direct for Yuletide and consistent xxxxxxSIP returns were painted
until he reached the Cedar City VORTAC 231/77. At this time (approx
0005Z, 6 Jan) D-45's Squawk disappeared. I immediately notified Yuletide
and initiated a call to Salt Lake to see if they were still painting
him. Salt Lake advised that his Squawk had merged with another one
and they had lost him. I also attempted to give Yuletide Radar a point-
out on D-45 beginning at a point south of Cedar City and continuing
until the Squawk disappeared but Yuletide was unable to paint him.

RAY M. SHORT, MSgt, USAF

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)
Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
(FOR OFFICIAL USE ONLY (SPECIAL HANDLING REQUIRED. SEE AFR 127-4))

25X1A STATEMENT

Name: __

AFSC/Job Title: ___

Date: 12 January 1967

Duty Phone: 3238

Grade: Captain

Organization or Address: __

Accident - A-12, #125, 5 Jan 67

Accident/Incident

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age: 28 Assigned Duty: Medical Officer, Aerospace Medicine

On the evening of 4 January 1967, I was in the company of __ from approximately 2030 hours until we both retired at 2300 hours. During this time we were watching television and talking. He did not appear intoxicated at this time and had no alcoholic intake during this period. He indicated that he had eaten his usual evening meal and he retired at approximately 2300 hours.

On the morning of 5 January 1967 he had already left the house when I awakened at 0730. I did not see him on the day of 5 Jan 67 prior to his flight.

25X1A

Captain, USAF (MC) FMO

SECRET
STATEMENT

Date: 11 January 1967

25X1A

Duty Phone: 3238

Name: [Redacted]

Grade: Captain 25X1A

Organization or Address: [Redacted]

AFSC and Job Title: 9356 - Medical Officer

Accident - A-12, #125, 5 Jan 67

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age: 29 Assigned Duty: Chief, Public Health & Occupational Medicine

Shortly after the body was found I arrived on the scene via helicopter. I observed the following: There were no visual signs of life. The body was wrapped in the partially deployed chute. The drogue chute was completely deployed. Approximately one square yard of orange chute was immediately visible, as was approximately one square yard of white. The damaged seat survival kit was still attached to the parachute harness. The fractured helmet was approximately two yards to the left of the body. Proceeding up the hill, I observed small pieces of skull bone, evidences of blood and brain tissue in numerous places, several round white teflon washers, and a large bent circular brass plate. The seat itself was about 25 yards up the hill from the body, and appeared to have the most damage on the left side. The seat belt had been fired. Approximately 5 to 7 yards further up, from the site of the seat, was the apparent impact point of the seat. At the impact point of the seat there was more brain tissue. The photographer then appeared on the scene and began his work. When the pictures of the body had been completed, I began removing the chute harness and seat survival kit. The chute was first unwrapped from the body. The survival kit was then removed by unclipping it from the parachute harness. The parachute harness was removed by unhocking the two leg straps and the chest strap, disconnecting the suit vent hose and disconnecting one emergency oxygen hose lead. The body remained in the pressure suit and was transported directly to Nellis AFB via helicopter where it was turned over to

25X1A

Captain, USAF

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)
ADDITIONAL STATEMENT

13 January 1967

Removing Parachute Harness: Both leg straps were definitely intact. The left strap was riding high and directly beneath it was a pressure suit tear and obvious abdominal wound. It was a definite impression, when I removed the leg strap, that the leg strap was the cause of the wound.

25X1A

Captain, USAF
ST A T E M E N T

Date: 9 January 1967
Home or Duty Phone: D/3368
Grade: T/Sgt
Organization or Address:

APSC or Job Title: 01179

Accident - Model A-12, #125, 5 Jan 67

Accident/Incident

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident/incident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age: 28
Assigned Duty: Life Support Technician

At 1100 hours, 5 January 1967, I as Life Support Technician, was assigned to assist in the following areas of pilot preparation prior to Flight #204 - Pilot:

1. Dress Pilot.
2. Functional test, suit and related equipment.
3. Transport pilot to aircraft.
4. Hook up pilot in cockpit.
5. Recheck hook-up procedure - using check list from pilot's left side.
6. Standby aircraft until take-off.

** This particular dressing and hook-up procedure was routine and normal.

** See Attachment (PRESSURE SUIT HOOK-UP AND CHECKLIST)

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)

Approved For Release 2001/08/29: CIA-RDP71B00590R000100010001-4
PRESSURE SUIT GEAR-UP AND CHECKLIST

1. Mask in pocket.
2. Stow caps secured.
3. Communication secured and functioning.
4. Face heat on (ambient) OFF.
5. Oxygen hoses secure in QD.
6. Hodge harness straps secured - harness adjusted and surplus stowed.
7. Mask adjusted and surplus stowed.
8. MB (2) helmet harness secured.
9. Mask belt, shoulder harness, key secured and adjusted.
10. Oxygen hoses under right leg-strap, chest strap under helmet-hold-down.
11. Emergency oxygen lanyard secured and pin removed.
12. Green apple secured.
15. MB (2) rocket jet releases secured.
16. Check chest latch.
17. Press-to-test both oxygen systems.
18. LOW oxygen pressure - #1 system 9.0/5 psi #2 system 95/100.
19. HIGH oxygen pressure departing - #1 system 9.5 psi #2 system 7.5 psi.
20. Seat guard over seat foot rest.

[Signature]

AIRCRAFT NUMBER 25

DATE ON FLIGHT 1-7-50

HIGH oxygen pressure returning #1 system

25X1A

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required, See AFR 127-4)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
(FOR OFFICIAL USE ONLY (SPECIAL HANDLING REQUIRED. SEE AFR 127-4))

STATEMENT

DATE: 9 January 1967

Duty Phone: 3280

GRADE: Tsgt

Organization or Address:

25X1A

NAME: [Redacted]

AFSC or Job Title: 492170 - Rescue & Survival Technician

Accident - A-12, #125, 5 Jan 67

Accident/Incident

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age 26

Assigned Duty: Rescue and Survival Technician

Flying Experience:

My name is [Redacted], Pararescue Section. I arrived in the impact area aboard the HH-53 Helicopter. It was set down on the ground and I had to proceed about a half mile on foot to the site. Approaching the area, I first came upon the body of the pilot who was wrapped in about ten feet of the top portion of his parachute. Proceeding on up from the body, I next came upon the ejection seat at approximately 50 feet above him and then about 15 feet above that a body impact point and 25 feet above it, the initial impact point, of seat and body. This all was on a 45 degree slope. In tracing the series of events from the beginning at the first impact point which was approximately 10 feet in length which appeared to be where the seat first hit and there was no evidence of any metal or portions of the aircraft or parachute located here. There were some pieces of the helmet visor and blood in area of initial contact. Fifteen feet further down the hill from there, the smaller impact point, there was more blood, imprint of suit material and the pilot-chute kicker plate. Upon examining the seat closely, I observed the following points: The seat was laying on the right hand side with the base of the seat pointing down hill. The seat appeared to have received the main impact, on the left side as this was severly accordion-folded, but not damaged a great extent as far as tearing or parts missing. I observed that the "D" ring had been pulled, the ejection "D" ring. One cable was cut, one cable was intact on the ejection ring. The next thing that I observed was that the lap belt apparently had fired because there were powder burns on this, apparently the squib did fire. Also I noticed that the arming knob had been pulled and this was laying over the bottom portion of the seat pointing down hill. The butt-kicker webbing was also fully extended indicating that it had operated. In looking right near the seat approximately 6 or 7 inches from the base of the seat I noticed a small portion, about 6 inches long and 2 inches in width, of material that the survival kit lids are made of. Looking up the hill to the right of the seat there was one of the teflon or polyethylene grommets that fit over the zone of the looking portion of the parachute where the ripcord goes through. Almost on the same elevation of the hill but perhaps 10 feet further to the right looking up the hill was the kicker plate from the pilot chute and another one of these polyethylene or teflon grommets. Proceeding 15 feet down hill from the point of rest of the seat there was found the right suit leg pocket that contained the new ASK (auxiliary survival kit) which was inside and intact. Portions of the body were scattered all along the approximately 90 feet from point of initial impact to point of rest of the body. Mainly it appeared to me to be portions of his head. Apparently the rest of his body was fairly well intact. Down at the body was his helmet laying just
one or two feet to the left side of him. The helmet was cracked and severely damaged, almost gutted inside. The visor was gone and the neck ring, I believe, was gone. As I mentioned earlier, the top portion of his torso was wrapped in the parachute as if he were thrown from the seat and rolled up in the chute as he traveled down the hill. Only about 10 feet of the chute had come out. The very uppermost portion of the parachute that was above his body was the pilot chute itself. The seat survival kit was fully intact and connected to parachute harness. It was just cracked open approximately one or two inches. Apparently forced out from under him was the seat cushion itself which contained the walk-around sleeping bag. It was torn open with just a little corner sticking out. I do recall that up by the pilot chute also was the little parka made out of nylon material, the light brown material. Also on going back up to the seat, I did notice the manual ring for the spur cable cutters was extended approximately, to the best of recollection, 6 inches. It appeared to me, from previous experience on aircraft accidents, that the body, in the manner it was broken, impacted probably only at terminal velocity, maybe 100 mph or 120 mph, but it didn’t appear to me to be the body of people that had struck the ground at 400 or 500 mph. The only conclusion that I can draw from this, is that he had ejected and slowed down and was still in the seat when he hit. The only action we took at the scene was to notify the cover aircraft that the pilot was dead. A flight surgeon was brought in and also a photographer was brought in. There was only about one hour of daylight remaining. The photographer took one shot from the body up to where the seat was located and took several shots of the body from various angles, proceeded up the hill, and took a photograph of the kicker plate from the pilot chute towards the seat to indicate how close it was to the seat. Then went up above to the very first impact point, the largest impact point, and took a photograph also trying to include the area where the pilot’s body was. He then came down and took several photographs of the ejection seat itself. I then proceeded down the hill to help evacuate the body.

This statement is true to the best of my knowledge. It was made as a casual observer at the scene and not as any statement with authority as to what the cause was for the body being found so close to the seat. My sole function was to render aid and assistance to the survivor if he were alive, and to help and evacuate him if he were dead.
1st IMPACT

2nd IMPACT

40' → SURVIVAL KIT HANDLE

Seat

Ground Mount

10' Piece of Kit

Helmet

3' Body

Note: From Seat to Body was approx 50'

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required - See AFR 127-4)

Approved For Release 2001/08/29: CIA-RDP71B00599R000100010001-4
STATEMENT

Name: ____________________________ Date: 9 January 1967

AFSC and Job Title: A92170 - Rescue &
Survival Technician

Duty Phone: 3280
Grade: Tech Sergeant

Accident - A-12, #125, 5 Jan 67
Organization or Address: ___________

Accident/Incident

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age 32

Assigned Duty: Rescue and Survival Technician

I arrived on the second helicopter and proceeded up hill to the body; at no time did I proceed any farther up hill than the body of the pilot itself. The Flight Surgeon and I were detailed to disconnect the pilot from some of his personal equipment to facilitate putting him into the remains bag for transport back to Nellis AFB. The pilot was laying with his head in an approximate up hill position. A portion of the parachute was spiralled around his body; however, the parachute was not fully deployed. The suspension lines were still in the flutes. His seat survival kit was firmly attached to the parachute harness. To remove him or get the body into the bag it was necessary to disconnect both sides of the survival kit. Both leg straps of the parachute were fastened and these were also disconnected. Likewise, the chest strap had to be disconnected. His legs were badly broken, his spurs were still on his shoes. There was nothing in the spurs themselves; the sockets were empty. His helmet was laying to the left side of the body. It had been gutted. We had to remove or unwind him from the parachute harness. The body was fairly intact although the suit was cut and abraded in general areas and it had been penetrated at the left lower abdomen. The Flight Surgeon and I put the pilot into the remains bag, trying not to disturb the survival kit which was fairly well intact and leaving most of the equipment just as we found it on the site for further investigation. Also, in disconnecting his personal equipment, it was necessary to disconnect his vent hose which was still intact. As we rolled the pilot's body over, it was necessary to disconnect one emergency O2 lead. The other one appeared to have been already disconnected, probably through impact. The parachute T-handle was still intact; it was just deployed three or four inches out of its storage socket which is not unusual for a parachute. It did not appear to have been pulled - probably impact jarring it into this position. During the removal of the parachute from the body, prior to storage in the remains bag, I cannot remember whether the drogue chute was still attached to the parachute harness, but the parachute harness is still in the area and this can be determined at later investigation.
STATEMENT

Name: [Redacted]

AFSC or Job Title: 92190 Physiological Training Supvr

Date: 9 January 1967

Home or Duty Phone: D/3368

Grade: M/Sgt

Organization or Address:

Accident- Model A-12, #125, 5 Jan 1967

I have been advised in accordance with the provisions of AFR 127-4 that the purpose of this investigation is to determine all facts relating to the above accident/incident, and in the interest of accident prevention to preclude recurrence. I understand that it is not to obtain evidence for use in disciplinary action, or for determining pecuniary liability or line-of-duty status, or to revoke commission or remove from the active list under the provisions of AFR 36-2 or for use before a flying evaluation board.

Age: 43

Assigned Duty: Life Support Supervisor

"My duties on this incident consisted of the following. Wednesday, 4 January 1967, I preflighted the parachute and survival kit in accordance with standard pre-flight sheet (Time 1700 hours approximately), secured same in proper bins. Thursday, 5 January 1967, flight was changed from Aircraft #30 to Aircraft #125, at this time I changed vent hose to his new aircraft number (each aircraft has its own vent hose). I then rechecked the two (2) rocket jet releases on the chute, lubricated bailout hose connectors and rechecked emergency oxygen pressure to assure minimum of 1800 psi. Equipment was then loaded into truck for delivery to aircraft.

I then asked for someone else to install the equipment in the aircraft, [Redacted] because I was going TDY and needed to bring [Redacted] up to date on all equipment that would be needed in flyaway bins in case of deployment.

See Attachment: (EQUIPMENT PREFLIGHT FOR HIGH FLIGHT)
EQUIPMENT PRELIMINARY FOR HIGH FLIGHT

PARACHUTE

1. Ripcord pins seated (main and first stage).
2. Hook opening elastic secured.
3. First stage jettison latches and pins secured.
4. Two (2) rocket jet units secured.
7. Tool knob secured.
8. Bailout hoses adjusted for pressure suit.
10. Harness adjusted for HIGH flight.
12. Anord of 5,000 to 7,500.
15. Communication cord secured to chute.

SURVIVAL KIT

1. Low handle secured.
2. Trigger clearance.
3. Kit disconnects secured.
4. Lid secured.
5. Visual condition.

INSTALLATION

1. Chute secured at disconnect.
2. Chute secured to chute - loose.
3. Emergency oxygen lanyard secured to chute and pin installed.
4. Communication cord secured at disconnect.
5. Vent hose secured to chute.
6. Pin secured in CH and safetied.
7. Oxygen system low pressure #1.
9. Stairway cables extended and operating freely.
10. Foot rest guards over seat foot rest.

SUBJECT: AIRCRAFT NUMBER: 12025

TECHNICIAN: DATE OF FLIGHT: 11-01

SEAT KIT NUMBER: 112 PARACHUTE NUMBER: 117

TYPE CUSHION: VENT HOSE NUMBER: 1125

ILLEGIB
EJECTION ANALYSIS

I. Initiators:

 a. D Ring Initiators: Both lanyard fired units appear completely normal - both units have fired - primer indent is normal - propellant deposits are normal.

 b. 4.0 sec Lanyard Initiator: This unit is the power source for the inboard (anvil) side of cable cutters. The unit appears to have fired normal. There has been a medium, to severe gas blow-by around the cap O-ring seal. Burning appears to have begun normal and possibly reached peak pressure as evidenced by the light grey deposits. O-ring failure then occurred allowing gas blow back from the line and out the cap; leaving black sooty grains inside the initiator on top of the completely burned grey powder deposits. This initiator would normally fire 0.5 sec prior to the 4.0 sec gas fired initiator supplying power to the blade side of the cutters. The gas blow-by from O-ring failure vented the pressure from the anvil side of the cutters. The anvils are in the original position with the blades fully stroked.

 c. 4.0 sec Gas Fired Initiator:

 The unit has fired.
 The firing pin chamber appears normal.
 The primer indent is normal.
 The propellant products of combustion are completely normal, light grey appearance.

 d. Instantaneous Gas Fired Initiator: This unit appears completely normal. Primer indent is normal; quite deep as compared to lanyard fired units. Deposits in the firing pin chamber are uniform to the "fired" location of the top of the pin, indicating firing pin moved due to gas pressure, not due to "g" acceleration at impact.

 e. 1.0 sec Gas Fired Initiator: This unit did not receive pressure and did not fire. Powder deposits on the external surfaces are due to the catapult disconnect blowing gases from both primary and secondary (D ring and T handle) initiators following catapult initial stroke.

II. Man Seat Separator (Rotary)Actuator: The unit appears to have fired normal. Gas deposits from combustion in the pressure chamber appear completely normal. The actuator has stroked normal (13" strap take up). The products of combustion in the chamber indicate the unit stroked to within .100 to .150 of the current (investigation) position immediately upon firing; then a very short time later (prior to cooling of the gases but after deposit of most combustion gases) the unit stroked the remaining .100 to .150. This is equal to approximately 3/4 inch of strap take up.
This final light deposit may have been caused at impact when the strap was allowed to take up another 3/4 inch due to seat distortion; or may have been the result of the piston being moved to the left due to accelerations on impact and then repositioning to the right. All indications are the unit performed normal and definitely stroked all the way upon actuation. The deposits could not be as they are if the unit stroked only partially during cartridge burning and then stroked the remaining distance later.
REPORT OF FINDINGS SUBJECT 1045 PILOTS PROTECTIVE ASSY

1. Helmet found near subject.

2. Left hand bearing with portion of sunshade and clear visor races intact.

3. Right hand bearing and mounting plate was torn from helmet.

4. Right hand latching knob and attaching parts were torn off right hand bearing.

5. Right hand bearing and portion of clear visor still held on by TRU-ARC ring found near helmet.

6. Helmet neck bearing which is resined to helmet was torn from helmet shell.

7. Greatest amount of damage was to left rear of helmet shell.

8. Helmet regulator was torn from mounting plate of helmet plumbing.

9. Suit neck bearing which mates to helmet bearing was broken in five different places.

10. The suit neck bearing was still in the locked position when found.

11. Left glove disconnect restraint was torn loose from head tape 7/8 distance around disconnect. Gas container in this area was still intact.

12. Six inch tear in outer cover right front lower scye area. Restraint and gas container still intact.

13. Suit altimeter read 37,000 feet apparently from impact.

14. Red plastic floatation garment actuating knob broken and showed signs of light gray paint.

15. As kit was torn from right lower leg pocket and found near subject.

16. Left side of left leg was torn open through gas container, restraint and outer cover.

17. Large tear through gas container, restraint garment and outer cover from mid stomach to left side of suit just above left leg.

18. Left glove thumb to palm seam parted.

19. Right glove index to middle finger crotch seam parted approximately 1 inch.

20. Left boot heel and sole partially ripped off.

21. Cut left side mid foot of subject thru fabric boot, gas container and leather boot which seemed to be from metal spur.

22. All visual indications of parts on hand seem to show that helmet visor was in the closed position at impact.

25X1A

SECRET
SPECIAL ORDER

6 January 1967

The following named officers and civilians, organizations indicated, are appointed members of an Aircraft Accident Investigation Board, under the provisions of AFR 217-4. Note: (*) indicates orders published with the approval of Dep/TIG, Hq USAF, Norton AFB, Calif.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>NAME, AFSN</th>
<th>DUTY</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL</td>
<td>JAMES G. FUSSELL, FRI6705</td>
<td>President</td>
<td>1002 I.G. Gp, Norton AFB, Calif</td>
</tr>
<tr>
<td>COL</td>
<td>HENRY W. RITTE, FRI3847</td>
<td>Operations</td>
<td>1002 I.G. Gp, Norton AFB, Calif</td>
</tr>
<tr>
<td>LTCOL</td>
<td>THOMAS B. HEND, FRI43187</td>
<td>Operations</td>
<td>1002 I.G. Gp, Norton AFB, Calif</td>
</tr>
</tbody>
</table>

NON-VOTING MEMBERS

<table>
<thead>
<tr>
<th>GRADE</th>
<th>NAME, AFSN</th>
<th>DUTY</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL</td>
<td>ALFRED K. PATTERSON, FRI4311</td>
<td>Advisor</td>
<td>1007 AISG</td>
</tr>
<tr>
<td>CIV</td>
<td>ARTHUR G. SMITH</td>
<td>Engines</td>
<td>1002 I.G. Gp, Norton AFB, Calif</td>
</tr>
<tr>
<td>CIV</td>
<td>ROBERT D. NAGLE</td>
<td>Electrical/ Electronics</td>
<td>1002 I.G. Gp, Norton AFB, Calif</td>
</tr>
</tbody>
</table>

FOR THE COMMANDER

SECRET

FOR OFFICIAL USE ONLY

Approved For Release 2001/08/29: CIA-RDP71B005900R000100010001-4
SPECIAL ORDER

11 January 1967

COL HENRY W. RITTER, FAH J-57, 1002 68 Sq, Norton AFB, Calif, is withdrawn from the Aircraft Accident Investigation Board at the request of Dep/TIG, HQ USAF, Norton AFB, Calif effective this date. Board appointed per 52 CS-1, this organization, 6 Jan 67.

FOR YOUR CONSIDERATION

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required, See AFR 127-4)
Approved For Release 2001/08/29: CIA-RDP71B00590R000100010001-4
USAF ACCIDENT INCIDENT INDEX

TAB
A – AF FORM 711 – USAF Accident/Incident Report
B – AF FORM 711a – Ground Accident Report (Not applicable for Acft Accidents)
C – AF FORM 711b – Aircraft Accident/Incident Report
D – AF FORM 711c – Aircraft Maintenance Material Report
E – AF FORM 711d – Missile Accident/Incident Report
F – AF FORM 711e – Explosives Accident/Incident Report
G – AF FORM 711f – Nuclear Accident/Incident Report
H – AF FORM 711g – Life Sciences Report of an Individual
I – Un satisfactory Report
J – Teardown Deficiency Report
K – List of Technical Orders Not Complied With
L – AFTO Forms 781 Series
M – AF FORM 5
N – Statements
O – Rebuttals
P – Orders Appointing Inves Board
Q – Board Proceedings
R – DD FORM 175 or DD FORM 1080
S – DD FORM 365 (Wgt-Balance)
T – Private Property Damage
U – Damage to Aircraft
V – Communication – Transcripts
W – Additional Data
X – Other Forms
Y – Diagram
Z – Photos
BOARD PROCEEDINGS

The Accident Investigation Board arrived on station on 5 January 1967 at approximately 2130 hours PST. Shortly thereafter members of the board met with the Commander in the Unit Command Post, for a general briefing of the sequence of events and actions taken prior to the board’s arrival. The chase pilot, [REDACTED] gave the board his version of the last five minutes of Dutch 45 flight, his observation of Article 125 final descent from altitude in the overcast and subsequent efforts to get under the overcast to locate the wreckage and the pilot.

The wreckage was located approximately 1600L, 6 January 1967, however due to the distance from base and lack of remaining daylight, the board delayed proceeding to the site until early 7 January 1967. Upon arrival at the crash site, it was obvious the wreckage was so catastrophic that little could be determined of the cause of the accident from the remaining debris.

The board assisted the search team throughout the remainder of the day in attempting to locate the pilot and the canopy. The pilot was located approximately 1600 hours, 7 January 1967, approximately eight miles East of the wreckage and was pronounced dead by the doctor accompanying the rescue team. The next two days, 8 – 9 January 1967, were spent examining the wreckage, records and searching for the canopy and cameras.

The first formal session of the Accident Investigation Board was convened at 0700 hours, 10 January 1967, to interview the pilot of the KC-135. In addition to the board members present, [REDACTED], LAC, was requested to attend and was present.

The board reconvened 11 January 1967, at 0900 hours, to interview Captain Sharp, F-105 Pilot from Nellis AFB, who observed the impact of Dutch 45. In addition, [REDACTED] the Chase Pilot for the final portion of the mission was interviewed. The board was recessed and scheduled to reconvene at 0800 hours, 12 January 1967.

There were no witnesses available for interview 12 January 1967. The board discussed evidence already collected and conducted exhaustive research of all feasible causes of the accident. In addition the board observed test conducted by LAC specialists as to reason for the pilot's failure to separate from the seat and the sequence of events that resulted in his death.

The final witness, [REDACTED] Chase Pilot for the refueling portion of the mission, was interviewed at 1030 hours, 13 January 1967. At the completion of the interview, the board recessed for the weekend since no additional evidence was available. The "over-the-shoulder" cameras were still missing and were still vital to the board for final determination of the primary cause of the accident.

Deliberation continued throughout the day of 16 January 1967. At 1800 hours, [REDACTED], of LAC, assisted by [REDACTED] presented a briefing covering the fuel quantity system of Article 125 and results of analysis of previous flights as well as the chart and graphs of the final flight of the Article. The briefing confirmed preliminary findings of the board, but no new evidence was presented. The board recessed at approximately 2200 hours.

Final deliberations were conducted 17 January and the board unanimously agreed and voted as to the cause of the accident.
FORMAL BOARD PROCEEDINGS

Col Fussell: Recorder, will you convene the Board please?

"In accordance with paragraph 18, AFR 127-4, the aircraft accident Investigation Board has been appointed by Special Order Number XB-1, dated 6 January 1967, to investigate and report the major aircraft accident involving A-12 aircraft, Serial Number 125, which occurred in Lincoln County, Nevada on 5 January 1967, to determine the cause factors for the sole purpose of accident prevention. This meeting is convened at 0700 hours PST on 10 January 1967 at All Board members are present."

Fussell: The first witness will be Lt Colonel Thomas.

Fussell: (To Lt Col Thomas). The sole purpose of the investigation is to determine all factors relating to the accident in the interest of accident prevention and preclude recurrence. The investigation will not be used as evidence nor to obtain evidence for use in disciplinary action to determine pecuniary liability or loss-of-duty status, to revoke a commission or support a demotion, to remove from active list under AFR 36-2 or ANR 36-014 as applicable or for use before a Flying Evaluation Board.

Fussell: Would you state your name, rank, serial number and organization?

Col Thomas: Clarence W. Thomas, Lt Col, FR42372, 903rd Air Refueling Sq, Beale AFB, California.

Fussell: Col Thomas, what were your duties at the time of this incident?

Thomas: I was the aircraft commander on the tanker that refueled Dutch 45.

Col Ritter: Col Thomas, was the ARCP made on time by your self and the receiver.

Thomas: Sir, we rolled out over the ARCP approximately six minutes late, in position with the tanker for refueling, we base our timing on his position so if he is late we plan to be late, so we are in a contact position at the ARCP (Air Refueling Contact Point).

Ritter: Was the receiver approximately six minutes late?

Thomas: Yes Sir.

Ritter: In your statement you mentioned that at one time during the refueling that Dutch 45 said that he had showed 43,000 pounds and you advised that you had transferred 39,000, can you clarify this difference?

Thomas: No sir, what had happened he had a disconnect and he called and said "owe you fuel", so I backed up, so he ran out 8700 and he stated words to the effect I show 43,000. Now when he stated I show 43, we don't know whether he meant fuel transferred to him by his indications on the fuel he had on board the aircraft.
disconnect. I heard the Boom Operator give him a voice command to move forward, and then I saw a disconnect light and he stated that he was slow and bringing the throttle in and he came back up again and made a contact, which would be three, then as he made the final turn on the last leg of the Air Refueling we hit some turbulence and he dropped off the boom for turbulence, and then he got back on again in about 30 seconds. So that's four total contacts.

Ritter: In your statement also, you mentioned that six minutes prior to the end of A/R you were going to initiate a climbing flight path. At that time Dutch 45 asked, if this was a new procedure and ultimately said he'd give it a try. Was this mission planned for a climbing refueling?

Thomas: Yes Sir, it was planned for a climbing refueling. Our procedure is at approximately 6 minutes prior to end of A/R we are indicating 320 knots, level flight. We initiate a 500 feet a minute rate of climb to end up over the ARCP at flight level 330. Six minutes, 500 feet a minute. It was briefed as such, it was flight planned as such. His statement, "a new procedure", or words to that effect may have meant is this a change in the schedule type thing rather than a new procedure, because he was familiar with the procedure I am sure having done it before.

Ritter: But he did sound a little surprised?

Thomas: Yes Sir, surprised. He sounded surprised that it was scheduled as a climbing A/R.

Ritter: Do you recall any other conversation that you may not have included specifically in your statement?

Thomas: No Sir, only other comment was that one other statement I made earlier about he was slow on bringing the throttle in, after one disconnect, that is not in the statement.

Ritter: You mentioned that you had transferred 61,000 lbs. Was this reading from the totalizer or the tank readings on your airplane?

Thomas: The 61,000 lbs was from the totalizer reading. The way we work this as the fuel is being transferred the gauges sometimes are not too accurate during the transfer period. We always use a totalizer to give you his off load and this is really cross checked and until the transfer is completed with the gauges, to insure that he has got the amount of fuel that he is suppose to have, we take a reading before we start the refueling and if it's going to be a refueling where he's taking a partial load we'll know how low to bring the tanks down to. To give him the correct amount of fuel, then we cross check with the totalizer, in this case we knew we had 60,000 by the tanks and when the tanks were dry of course we assumed he transferred all 60,000 and of course we rechecked the totalizer, at the time it was 61,000 so it could be 1,000 lbs difference in the two readings.

Ritter: Do you use the totalizer?

Thomas: Yes Sir.

Ritter: For your off load report?

Thomas: That is correct Sir.
Ritter: Were you scheduled for another refueling on this particular sortie?

Thomas: No sir, that is the only refueling we were scheduled for.

Ritter: Did you, in fact refuel one other aircraft?

Thomas: Yes sir, we refueled the secondary who was not scheduled, he contacted us in the last turn into the ARCP during our rendezvous and stated he had to have some fuel or leave the area, and we advised him that we had 65,000 lbs 60 for the primary and we had none scheduled for him, and he again stated I have to have fuel or leave the area. So I said I can give you 4,000 lbs.

Russell: Would you state for the records that the secondary was Boxer 17, is that correct?

Thomas: That is correct sir, Boxer 17.

Russell: Do you have a procedure within your unit wherein you carry 10,000 lbs additional fuel on a refueling mission or is this not a standard procedure?

Thomas: For this type of operation our scheduling people normally schedule aircrafts with additional fuel on board, in the attempt to have additional fuel on board in case additional is required. In this case where we were scheduled for only a 60,000 lbs off load we did have 65,000 lbs on board. There is no procedure that I know of in the Squadron that sets a definite amount that you will have on board ever and above the scheduled off load, for a training mission.

Russell: Would you state in general terms that this refueling was normal?

Thomas: Yes sir, it was a normal air refueling and from all indications a good rendezvous, the receiver flew an excellent air refueling, the Boom Operator said he was in there, did a real good job, there were no problems during the refueling what so ever except for a little turbulence we had.

Col Thomas would you state for the records whether or not Dutch 45 appeared to be under excessive fatigue or strain during this refueling.

Thomas: As far as I could determine from his conversations and the way he handled the aircraft and conducted the rendezvous that he was not under fatigue. He appeared to be alert, very confident during the whole operation, very relaxed, very normal.

Thank you.

Witness: Thomas

FOR OFFICIAL USE ONLY
Approved For Release 2001/08/29: CIA-RDP71B00590R000100010001-4
(To Capt Sharp). The sole purpose of the investigation is to determine all factors relating to the accident in the interest of accident prevention and preclude recurrence. The investigation will not be used as evidence nor to obtain evidence for use in disciplinary action to determine pecuniary liability or line-of-duty status, to revoke a commission or support a demotion, to remove from active list under APR 36–2 or ANQR 36–014 as applicable or for use before a Flying Evaluation Board.

Fussell: Would you tell the board your name, rank, serial number, your duty station?

Capt Sharp: James C. Sharp, Captain, FR58690, I am stationed at 4526 Combat Crew Training Sq, Nellis AFB.

Fussell: What was your mission at the time of the mishap?

Sharp: It was a dollar ride. Refers to new transition students in the back seat, showing him the local area, To get him acquainted with the local area before he makes his first front seat ride.

Fussell: I believe you stated in your written statement that you were also on a search mission for the F4C that had gone down earlier in the day?

Sharp: We had made one trip around the area up north and back around to the Spring Mountain area. While we were coming back towards the south I got a call from one of the other members of the Sq., saying he was over in the Caliente area and was searching and was over the F4C crash and that the C.F. wanted someone else to come over and take his place because he was getting low on fuel to help guide the ground party into the crash site. So I guess I was one of the last ones airborne. I started that way and he left before I got there and I was trying to find the site but weather was getting progressively worse. This weather seemed to be moving south and when he left, he said the clouds weren't over the crash site, but when I got there I couldn't get in, everytime I approached it, what I thought was the crash site, I went IFR.

Fussell: You are referring now to the F4C?

Sharp: Yes sir, So I never did find it. That's the reason I was over the Caliente area. I was directed over there by the C.F. at Nellis.

Fussell: What was your position in relation to Dutch 45 at the time of the crash?

Sharp: Who is Dutch 45?
Fussell: Dutch 45 is the aircraft involved in this accident.

Sharp: When I saw him, I saw him for a brief, split second, I was in a right hand turn. I just came out of the clouds and I was right at the base of the overcast.

Fussell: At what altitude were you at that time?

Sharp: Approximately 8 or 9,000 feet.

Fussell: Right at the base of the overcast?

Sharp: Yes sir and I saw him to my southwest, I was in a right hand turn passing through southeast. I was looking out of the top of my canopy and all of a sudden this object came out of the clouds and almost a vertical dive, not quite. It looked like a real good steep dive bomb bank, about 60 degrees.

Fussell: What navigational instrument did you use to fix your position at that time, or was it a visual fix?

Sharp: At that time it was strictly visual. I made two passes over the site and I realized that I was going to have a hard time to pinpoint it because of the clouds so I moved off to the south and started climbing for altitude so I could try to pinpoint it with TACAN. My TACAN happened to be on 116 and I got a lockon. So I pinpointed the position approximately by the TACAN from Las Vegas VORTAC.

Fussell: And would you give us a reading on your DME?

Sharp: 010 Radial, 76 miles.

Fussell: Would you tell the board the approximate angle that you observed the aircraft to crash?

Sharp: Yes sir, it was approximately 60 degrees. I thought maybe it could have been a rocket, I saw no indication of pull out, trying to pull out, it seemed to go right straight into the ground, at about 60 degrees angle.

Fussell: The board realizes that, you had very little time to look at it, but did the object appear to be intact?

Sharp: Yes sir, as far as I can tell, there wasn't anything trailing it other than this white vapor. I don't know whether that was the vapor from just emerging from the clouds or whether it was fuel or what, but it had a long trail of white vapor behind it.

Fussell: Could you give us a feel whether or not the wings were relatively level, inverted or what position it was in?

Sharp: I really didn't see any wings on it. I couldn't tell, so I just assumed that the angle I was looking at it from was a side view and that his right wing was facing me.

Fussell: Briefly here, you were to the north, headed -

Sharp: Southeast.

Witness: Sharp

Approved For Release 2001/08/29; CIA-RDP71B00590R000100010001-4
(Special Handling Required. See Annex 12/48)
Pussell: Generally southeast?

Sharp: Yes sir.

Pussell: And you saw what you thought was the right wing going in at 60 degrees angle?

Sharp: No sir, No sir, I am sorry, what I saw was it looked to me like the aircraft was heading approximately north westerly direction, between north and west, and that the dive angle was approximately 60 degrees and I must have been looking, at an exact side view of the aircraft, because I didn't see a wing surface.

Lt Col Reed: Capt Sharp, the split second that you saw the object, would you be able to give us any relationship to speed, do you think it was supersonic, subsonic, or what?

Sharp: No sir, I just a guess, like I said, I thought possibly it could have been an F-105 and so I immediately thought of it crashing somewhere in the neighborhood of 400 plus, 4 or 500, but that's just a wild guess.

25X1A It didn't appear to be rolling to you?

25X1A Sharp: It seemed to just go straight in.

What altitude would you say it was when you first saw it?

Sharp: About at 9 or 10,000, just as it came out of the clouds.

Mr Nagle: At approximately what distance was the object from you when you sighted it?

25X1A Sharp: Not more than 5 miles.

25X1A Sharp: Did you notice any other object coming out of the clouds, such as a man and a parachute, drag chute, or -

Sharp: No, I didn't see anything else, just this one object.

Nagle: On what you believe to be a contrail, could you tell from what part of the airplane it was emanating? Was it the extreme aft end or some spot forward?

Sharp: Well, once again, I don't know whether you are familiar with the plume that the 105 makes at alt when afterburners are engaged, but it pours fuel out the tail pipe that makes a very pretty white, thick plume and this is the impression I got when I saw this stuff come out of the clouds, was that it was a 105 streaming fuel from the tail section. Whether it was or not a stream of fuel coming from the tail section I couldn't be sure, but this was the impression I got, that it was all coming from the aft or back portion of the airplane or object.

25X1A Would you describe what you saw immediately subsequent to impact?

Sharp: A great billow of grey smoke and scattered fires, and they were very bright fires.

Witness: Sharp
Gordon: How many fires did you observe?
Sharp: It seemed like it was about 4 or 5.
Gordon: Were any brighter than the others, or all the same intensity?
Sharp: No, they all seemed about the same intensity.
The sole purpose of the investigation is to determine all factors relating to the accident in the interest of accident prevention and preclude recurrence. The investigation will not be used as evidence nor to obtain evidence for use in disciplinary action to determine pecuniary liability or line-of-duty status, to revoke a commission or support a demotion, to remove from active list under APR 36-2 or ANGR 36-014 as applicable or for use before a Flying Evaluation Board.

Fussell: Would you tell the board your name, rank, serial number and your present duty.

Fussell: Would you tell the board your mission at the time of this mishap?

Yes sir, I was assigned to duty as a recovery chase, in F-101, for Dutch 45.

What was your position, your DME, you stated in your written statement that you were on 073 radial, what was your DME on this radial when you first sighted Dutch 45?

I wasn't on the radial air, I was rolling out, to head Eastbound, when I first spotted him, out to the east, I wasn't certain then that it was Dutch 45, but it looked like a Cygnus contrail inbound.

Would you estimate his distance at first sight?

I haven't figured it out, but it was the time it took me to make a 180 degree turn, from where they gave me his position Southwest of the Bryce Canyon, so that's 150 miles.

Could you tell the board the situation as far as contrails are concerned?

Yes sir, when I first saw him, he was conning. The con looked like an absolutely normal con for Cygnus aircraft that I've seen many times. It was very persistent, it appeared to be on a descending track inbound the whole time. As a matter of fact, it was so persistent that you could see upper air currents causing it to wave and after the con stopped, I proceeded to a point under where it stopped to try to locate the pilot, because that's where he said he was leaving.
Fussell: According to your previous statements, you stated you had several communication transmissions, with the pilot. Did you notice any apprehension in his transmissions, anything that would indicate a lack of oxygen or any physical decline at all?

25X1A No sir. He seemed absolutely calm.

Fussell: Would you give the board your best estimate of the point he bailed out in relation to when the aircraft nosed over.

25X1A Well sir, I would guess, when he bailed out he was between 30 and 35,000 feet and about 15 miles dead ahead of me at the time. I don't recall exactly but I would say I was 55 miles or so on our TACAN, so that would put him roughly 70 miles DME off of our TACAN. Now, this is a guess because it's pretty hard to say, the airplane was very small, but I could see the airplane.

Fussell: OK, this is not particularly related to the accident, but in your duty as training officer, a statement was made earlier by [redacted] at the time of refueling when told by the aircraft commander of the tanker that he would climb to 33,000, [redacted] stated "is this a new procedure?". Can you tell the board whether or not [redacted] had ever performed this procedure before, or your interpretation of why he asked the tanker commander this particular question?

25X1A Well, to answer the first part of the question, I don't know right now without looking at records, whether he has ever made a climbing AR before, it is not a new procedure and I am certain he has been briefed on it and [redacted] who was supposed to fly this flight before it was changed was in on arranging both AR's were two climbing AR's and he knew they were and he briefed [redacted] so I am sure [redacted] was briefed on climbing AR's. I don't know why he made the statement.

Reed: Would you tell the board when [redacted] was actually notified that he was going to substitute, that his airplane had been cancelled and that he would have a different sortie?

25X1A He was scheduled to fly aircraft 130 with an 0830 briefing that morning. The airplane cramped and we substituted, or swapped then, [redacted] on the schedule because [redacted] we felt needed the sortie and I don't know exactly what time of day, but I would say it was right around between 0800 and 0830. It was before 130's briefing as scheduled and then it was cancelled.

Col Patterson: When you switched airplanes 130 and 125, and [redacted] took 125, he also took [redacted] mission as well as his airplane, did he not?

25X1A

Witness: [redacted]
Patterson: It was an airplane switch and a mission switch?

Patterson: And when was he briefed on this mission, on the mission he actually flew, he was already briefed on the other mission for 130, was he not?

No sir, we have a final briefing an hour and 30 minutes prior to launch. 130 was supposed to go at 1000 hours, he was to be briefed at 0930. 125, I think it was 1030 briefing for a 12 o'clock launch, and it was between that time and 0930 that he talked to him and he also went back into flight planning and looked over this new sortie and then was finally briefed on final briefing at 1030.

Patterson: He had a regular formal briefing for this sortie at 1030?

Earlier you stated that he ejected between 30 and 35,000 feet, would you explain that.

Yes sir. It was just an estimate on my part based on the size of the airplane and the way the contrail looked to me, as I was at 21,000 feet cruising toward him.

Would you tell us the top of the overcast at this time?

Well, the tops right at the time the airplane went in the tops of the clouds, I didn't know what they were, but after I descended to look for and climbed back out, I noticed they were 18,000 feet.

From the time that you first sighted him until he disappeared in the clouds was the con, or whatever it was, persistent the entire time?

From the time I first sighted him where I first heard about him Southwest of Bryce Canyon until he said engines have both quit, I'm leaving, or something to that effect, the con was very persistent, the whole way. At that time though, it quit.
At the time he said?

The engines have quit, I'm leaving, the com stopped.

Russell: In the tanker pilots testimony, he stated that there was no requirement on this mission for fuel for the chase actf prior to the second refueling of Dutch #45. In other word, when the chase aircraft asked for fuel, you were not aware that he would need fuel, can you explain this discrepancy. Was the tanker unit notified, the chase would require fuel or not.

Well sir, the first refueling the tanker unit coordinated to have off-load to the chase, that was the top-off brief for the chase pilot and the tanker crew, or the tanker organization was they would not have a briefed off-load to the chase aircraft on the second refueling. Specifically why required fuel, at the second refueling, I don't know. I don't know what his power settings were or anything in the approx hour and a half that was going around the course.

Russell: has made the statement he would have to have fuel or return to the base, and as the result, received 3800 lbs of fuel from the tanker, approx 4000 lbs, this was not a scheduled refueling?

That's correct.

could you establish the com level at the time of what you think the ejection was?

No sir, I didn't go up to see if I commed or not, all I know is he was comming.

One other question, regards, did you see the pilot eject or a drogue chute with the pilot coming down attached to it at anytime?

No sir, no signs of pilot ejection at all. But, back to the other question now, I don't recall for what it's worth, I didn't see any other coms in the area at all.

One other question then. Did you observe at anytime the night before the mission?

I don't remember seeing him, Ted.
Fussell: The sole purpose of the investigation is to determine all factors relating to the accident in the interest of accident prevention and preclude recurrence. The investigation will not be used as evidence nor to obtain evidence for use in disciplinary action to determine pecuniary liability or line-of-duty status, to revoke a commission or support a demotion, to remove from active list under AFR 36-2 or ANG 36-014, as applicable or for use before a Flying Evaluation Board.

Fussell: Would you tell the board your name, organization and duty? 25X1A

Fussell: Duty is pilot.

Fussell: Could you tell the board, did you see any contrails during or after the second refueling? 25X1A

Fussell: No, I did not.

Fussell: Did you check Dutch 45 after his refueling to assure that there was no fuel leaks or that the airplane was clean? Did you check him top and bottom? 25X1A

Fussell: Yes.

Fussell: Were you aware that Dutch 45 was approaching the tanker late and below "Bingo" fuel? 25X1A

Fussell: Not that I can recall. The time may have been some five minutes late but, I didn't notice him getting up to the tanker early or late so I really didn't check it.

Fussell: One final question. Tanker A/C indicated in his testimony that his schedule did not call for an off-load to you as the chase aircraft. However, there are indications you took 3800 lbs of fuel. Could you explain the conditions surrounding why you had to take on fuel at this time? 25X1A

Fussell: Well, in the briefing that I got they said that I was not scheduled to take any fuel but, they should have fuel in case I needed it. I was just orbiting at minimum power settings for the L01, waiting for him to get back. The time, I think, was too long.

Reed: If he'd been early you say he was a little late.

Reed: Maybe if he had been on time I may have had enough that I could have gone back home at the 4000 pound bingo fuel level. However, if he had refueled and taken the normal amount of time in refueling, I had 4500 pounds at that time, I would have been at bingo or below and I would have had to return without being able to check him over at all. I told them I needed some fuel and I asked them if they would give me some and they said they couldn't give me over 4000 lbs. I said fine so I took it and I checked on my tanks seeing that I got that much and said, "you can stop here", and they said Roger, and they cut it off with 3800 pounds, so it was just a little short of the 4000 pounds they said they could give me anyway.

Fussell: Have you on previous chase flights, taken on fuel when you weren't scheduled such as you did in this case?

Witness: SECRET
Yes, it's happened. It's very seldom. I can't recall any particular time that it happened.

Would you describe, if you can, when Dutch 45 lit his AB's during his refueling? For instance did he approach the tanker on burner or did you see the customary puff of smoke when he stopped burner and when did he light the one burner he was using to refuel?

I don't know if he had it lit as he was approaching because I was with the tanker and off to the side waiting for him to join up, because I had just finished refueling. But, at one time I did see the puff of smoke that is indicative of lighting the afterburner and that was the left afterburner that had been lit and at that time he did drop off....he was plugged in, or no, he was just in the approach. He dropped back, then went back in. He was fairly low on fuel and he had refueled some and then he had gone back on with the afterburner.

He disconnected after he got some gas, lit one afterburner, then moved back in. Is that what you said?

I believe this is so. This is a little bit vague because of the time here now, but I think this is what occurred. He went on with his fuel, he asked how far he had to go, and some of the conversation was a little bit difficult to understand.

I have one other question. Did you observe any leaks, particularly under the bottom of the aircraft? Were you in a position to observe whether the bottom of the aircraft was wet?

I went under it a couple of times, back and forth, checking the afterburners, the afterburner section, up above between the tails. Of course this was after he stabilized and while he was refueling. The only thing that I saw as far as a leak, which is not a leak, was under the little drain from the refueling receptacle which is the normal drain for the receptacle and there was a little spurt out of there occasionally.

Did it wet the bottom of the aircraft?

Not that I could tell.

I have no further questions.

Col Reed:

Would it be possible under this mission with double refueling, could you check him on his first refueling, come home and land, and then take off, say 30 minutes or even 20 minutes later and go back for chase on the second?

This is possible. Very seldom is it necessary. When this is considered necessary, it's done. If we do not have enough of 101 aircraft available, enough chase pilots available, however, usually they'll have enough fuel for both receivers, the big one and the 101, to get a little bit, and the Cygnus to get all the fuel he wants.

Reed:

Say the first tanker had enough for the receiver but not for you. You could have actually have come home. Would you have had time to turn your aircraft around, refuel it, and then go back for him on the second one?
I'm sure this could have been done. We have a certain amount of turn around time for the aircraft too required by the manual. I don't know how many aircraft we had available at that time. Didn't pose any particular problem at that time.

Were you in a position to observe during the last portion of his formatting with his tanker? Say the last 5 or 10 miles of his coming up on the boom?

I was flying to his right in an observation position of him and the tanker all the time except when I went underneath and to the left side to check him over.

Did you notice anything unusual in the last portion of his formatting procedure? Any apparent leaks or anything like this?

No, I didn't. I said the only leak I ever saw was coming out of the little drain. That of course comes right out of the refueling receptacle. After he moved off, when they decided he had to go now, apparently they had no more fuel, he moved off and I checked his right afterburner light. Everything was normal then and I still couldn't see anything. After he came down high and fast, this is usually the time when you go in to check them over to see that nothing bent, missing, panels, and anything that you might see because this is usually were the stress and strain is caused. I observed nothing that leaked out of the ordinary.

One other question. Did you at anytime, hear indicate on UHF that he was below "Bingo" fuel and had to have his fuel now?

No.

Did you hear express surprise at this climbout refueling?

I don't think I understand just exactly what you mean. Type of refueling?

Climbing from AR.

No. The only surprise that I, if you can call it this, concerned, that he expressed, was a matter of as I put on my statement, still roughly 5000 pounds short of being, of indicating being, full. Now, I don't know, I'm assuming he meant, being full, indicating on the gauge and not necessarily just being full up to the point of required amount of fuel he had to continue which I think was about sixty-six to thirty to continue the flight. I think he would have given the reading - this is just my opinion. I think he would give the reading off the gauge. This is just my opinion.

Regards your observance of flying technique in the refueling procedures, could you state whether you thought there was evidence of excessive fatigue or poor judgement or flying ability in this refueling procedure?

Not being in the cockpit with him, it's rather difficult to say. From his voice and observing his flying, his refueling tactics, etc, I didn't observe anything of this nature. Everything appeared to be normal. His voice, the tone of his voice, his reactions, what he would have done from the refueling when he found out "by gosh, this is all I'm getting, I'm going to go now, no need to sit here." He was short of the end AR, he was short of the refueling or of the refueling quantity he wanted.
He said he was short of the end AR point?

They had not reached the end AR point and of course he was not full which we all try to get to.

Would you please describe the rendezvous; that is, was it a good rendezvous and was there any excessive tail chase?

No, I didn't consider it an excessive tail chase, compared to the ones I've made and all the others I've seen as a chase pilot and I would consider it a normal rendezvous.
USAF Accident Incident Index

TAB

A - AF FORM 711 - USAF Accident/Incident Report
B - AF FORM 711a - Ground Accident Report (Not applicable for Acft Accidents)
C - AF FORM 711b - Aircraft Accident/Incident Report
D - AF FORM 711c - Aircraft Maintenance Material Report
E - AF FORM 711d - Missile Accident/Incident Report
F - AF FORM 711e - Explosives Accident/Incident Report
G - AF FORM 711f - Nuclear Accident/Incident Report
H - AF FORM 711g - Life Sciences Report of an Individual
I - Unsatisfactory Report
J - Teardown Deficiency Report
K - List of Technical Orders Not Complied With
L - AFTO Forms 781 Series
M - AF FORM 5
N - Statements
O - Rebuttals
P - Orders Appointing Inves Board
Q - Board Proceedings
R - DD FORM 175 or DD FORM 1080
S - DD FORM 365 (Wgt-Balance)
T - Private Property Damage
U - Damage to Aircraft
V - Communication - Transcripts
W - Additional Data
X - Other Forms
Y - Diagram
Z - Photos
MILITARY FLIGHT PLAN

<table>
<thead>
<tr>
<th>TYPE OF FLIGHT PLAN</th>
<th>RADIO CALL</th>
<th>AIRCRAFT DESIGNATION/ TO CODE</th>
<th>ESTIMATED TRUE AIRSPEED</th>
<th>DEPARTURE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR</td>
<td>DUTCH 45</td>
<td>SR 71/4</td>
<td>T75-SC</td>
<td>1940 1952</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INITIAL CRUISING ALTITUDE</th>
<th>POINT OF DEPARTURE</th>
<th>NAME AND NUMBER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>30000 ft</td>
<td>25X1A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IFR</th>
<th>VFR</th>
<th>ROUTE OF FLIGHT</th>
<th>GF TO</th>
<th>KTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25X1A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

DFK P6 T7 T7 Plus 1:08
MC 04/198 1L 600
Tunnel FL 290 TO T15
LA(BH)

SIGNATURE OF PILOT IN COMMAND

<table>
<thead>
<tr>
<th>DUTY</th>
<th>NAME AND INITIALS</th>
<th>GRADE</th>
<th>SERVICE NO.</th>
<th>ORGANIZATION AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PILOT IN COMMAND</td>
<td>25X1A</td>
<td>CIV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|-------|-------------|---------------------------------|----------------------------|

SECRET
FLIGHT WEATHER BRIEFING

TAKEOFF DATA

<table>
<thead>
<tr>
<th>RUNWAY TEMP.</th>
<th>PRESSURE ALT.</th>
<th>TEMP DEVIATION</th>
<th>VAPOR PRESSURE</th>
<th>SPECIFIC HUMIDITY</th>
<th>DENSITY ALTITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLIMB WINDS

REMARKS

ENROUTE DATA

<table>
<thead>
<tr>
<th>FLIGHT LEVEL</th>
<th>TEMPERATURE</th>
<th>WINDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLOUDS AT FLIGHT LEVEL

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>IN AND OUT</th>
<th></th>
<th>VISIBLEITY AT FLIGHT LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HAZE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM CEILING ENROUTE

<table>
<thead>
<tr>
<th>MAXIMUM CLOUD TOPS</th>
<th>MINIMUM FREEZING LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THUNDERSTORMS

<table>
<thead>
<tr>
<th>TURBULENCE</th>
<th>PRECIPITATION</th>
<th>ICING</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>FEW</td>
<td>CAT</td>
<td>LOT</td>
</tr>
<tr>
<td>SCATTERED</td>
<td>TSTM</td>
<td>MOD</td>
</tr>
<tr>
<td>NUMEROUS</td>
<td>SVR</td>
<td>FREEZ</td>
</tr>
<tr>
<td>HAIL</td>
<td></td>
<td>IN CLOUDS</td>
</tr>
</tbody>
</table>

FORECAST

FORECAST

COMMENTS/REMARKS

TERMINAL DATA

DESTINATION (Existing)

FORECAST

<table>
<thead>
<tr>
<th>Z TO</th>
</tr>
</thead>
</table>

ALTERNATE (Existing)

FORECAST

<table>
<thead>
<tr>
<th>Z TO</th>
</tr>
</thead>
</table>

WEATHER FACILITY

TELEVISION/THE TELEPHONE BRIEFING RECORD

<table>
<thead>
<tr>
<th>START</th>
<th>STOP</th>
<th>PHONE CHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOID TIME EXTENDED TO

25X1A.

DD FORM. 1 NOV 44 175-1
USAF Accident Incident Index

<table>
<thead>
<tr>
<th>TAB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AF FORM 711 - USAF Accident/Incident Report</td>
</tr>
<tr>
<td>B</td>
<td>AF FORM 711a - Ground Accident Report (Not applicable for Acft Accidents)</td>
</tr>
<tr>
<td>C</td>
<td>AF FORM 711b - Aircraft Accident/Incident Report</td>
</tr>
<tr>
<td>D</td>
<td>AF FORM 711c - Aircraft Maintenance Materiel Report</td>
</tr>
<tr>
<td>E</td>
<td>AF FORM 711d - Missile Accident/Incident Report</td>
</tr>
<tr>
<td>F</td>
<td>AF FORM 711e - Explosives Accident/Incident Report</td>
</tr>
<tr>
<td>G</td>
<td>AF FORM 711f - Nuclear Accident/Incident Report</td>
</tr>
<tr>
<td>H</td>
<td>AF FORM 711g - Life Sciences Report of an Individual</td>
</tr>
<tr>
<td>I</td>
<td>Unsatisfactory Report</td>
</tr>
<tr>
<td>J</td>
<td>Teardown Deficiency Report</td>
</tr>
<tr>
<td>K</td>
<td>List of Technical Orders Not Compiled With</td>
</tr>
<tr>
<td>L</td>
<td>AFTO Forms 781 Series</td>
</tr>
<tr>
<td>M</td>
<td>AF FORM 5</td>
</tr>
<tr>
<td>N</td>
<td>Statements</td>
</tr>
<tr>
<td>O</td>
<td>Rebuttals</td>
</tr>
<tr>
<td>P</td>
<td>Orders Appointing Inves Board</td>
</tr>
<tr>
<td>Q</td>
<td>Board Proceedings</td>
</tr>
<tr>
<td>R</td>
<td>DD FORM 175 or DD FORM 1080</td>
</tr>
<tr>
<td>S</td>
<td>DD FORM 365 (Wgt-Balance)</td>
</tr>
<tr>
<td>T</td>
<td>Private Property Damage</td>
</tr>
<tr>
<td>U</td>
<td>Damage to Aircraft</td>
</tr>
<tr>
<td>V</td>
<td>Communication - Transcripts</td>
</tr>
<tr>
<td>W</td>
<td>Additional Data</td>
</tr>
<tr>
<td>X</td>
<td>Other Forms</td>
</tr>
<tr>
<td>Y</td>
<td>Diagram</td>
</tr>
<tr>
<td>Z</td>
<td>Photos</td>
</tr>
<tr>
<td>Date</td>
<td>Amount</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>4 Jan 67</td>
<td>204</td>
</tr>
<tr>
<td>5 Jan 67</td>
<td>425</td>
</tr>
<tr>
<td>6 Jan 67</td>
<td>500</td>
</tr>
<tr>
<td>7 Jan 67</td>
<td>530</td>
</tr>
<tr>
<td>8 Jan 67</td>
<td>5300</td>
</tr>
<tr>
<td>9 Jan 67</td>
<td>5300</td>
</tr>
<tr>
<td>10 Jan 67</td>
<td>5300</td>
</tr>
<tr>
<td>11 Jan 67</td>
<td>5100</td>
</tr>
<tr>
<td>12 Jan 67</td>
<td>(-) 1100</td>
</tr>
<tr>
<td>13 Jan 67</td>
<td>4000</td>
</tr>
<tr>
<td>14 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>15 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>16 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>17 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>18 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>19 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>20 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>21 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>22 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>23 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>24 Jan 67</td>
<td>600</td>
</tr>
<tr>
<td>25 Jan 67</td>
<td>600</td>
</tr>
</tbody>
</table>

SECRET

For Official Use Only

Approved

[Image of black boxes and annotations]

[Text continues on the page]
USAF Accident Incident Index

<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AF FORM 711 - USAF Accident/Incident Report</td>
</tr>
<tr>
<td>B</td>
<td>AF FORM 711a - Ground Accident Report (Not applicable for Aircraft Accidents)</td>
</tr>
<tr>
<td>C</td>
<td>AF FORM 711b - Aircraft Accident/Incident Report</td>
</tr>
<tr>
<td>D</td>
<td>AF FORM 711c - Aircraft Maintenance Material Report</td>
</tr>
<tr>
<td>E</td>
<td>AF FORM 711d - Missile Accident/Incident Report</td>
</tr>
<tr>
<td>F</td>
<td>AF FORM 711e - Explosives Accident/Incident Report</td>
</tr>
<tr>
<td>G</td>
<td>AF FORM 711f - Nuclear Accident/Incident Report</td>
</tr>
<tr>
<td>H</td>
<td>AF FORM 711g - Life Sciences Report of an Individual</td>
</tr>
<tr>
<td>I</td>
<td>Unsatisfactory Report</td>
</tr>
<tr>
<td>J</td>
<td>Teardown Deficiency Report</td>
</tr>
<tr>
<td>K</td>
<td>List of Technical Orders Not Complied With</td>
</tr>
<tr>
<td>L</td>
<td>AFTO Forms 781 Series</td>
</tr>
<tr>
<td>M</td>
<td>AF FORM 5</td>
</tr>
<tr>
<td>N</td>
<td>Statements</td>
</tr>
<tr>
<td>O</td>
<td>Rebuttals</td>
</tr>
<tr>
<td>P</td>
<td>Orders Appointing Inves Board</td>
</tr>
<tr>
<td>Q</td>
<td>Board Proceedings</td>
</tr>
<tr>
<td>R</td>
<td>DD FORM 175 or DD FORM 1080</td>
</tr>
<tr>
<td>S</td>
<td>DD FORM 365 (Wgt-Balance)</td>
</tr>
<tr>
<td>T</td>
<td>Private Property Damage</td>
</tr>
<tr>
<td>U</td>
<td>Damage to Aircraft</td>
</tr>
<tr>
<td>V</td>
<td>Communication - Transcripts</td>
</tr>
<tr>
<td>W</td>
<td>Additional Data</td>
</tr>
<tr>
<td>X</td>
<td>Other Forms</td>
</tr>
<tr>
<td>Y</td>
<td>Diagram</td>
</tr>
<tr>
<td>Z</td>
<td>Photos</td>
</tr>
</tbody>
</table>
CERTIFICATE OF DAMAGE

11 January 1967

The aircraft (A-12, Nr. 125) was totally destroyed upon impact.

25X1A

Recorder, Accident Investigation Board
USAF Accident Incident Index

TABLE

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AF FORM 711 - USAF Accident/Incident Report</td>
</tr>
<tr>
<td>B</td>
<td>AF FORM 711a - Ground Accident Report (Not applicable for Acft Accidents)</td>
</tr>
<tr>
<td>C</td>
<td>AF FORM 711b - Aircraft Accident/Incident Report</td>
</tr>
<tr>
<td>D</td>
<td>AF FORM 711c - Aircraft Maintenance Material Report</td>
</tr>
<tr>
<td>E</td>
<td>AF FORM 711d - Missile Accident/Incident Report</td>
</tr>
<tr>
<td>F</td>
<td>AF FORM 711e - Explosives Accident/Incident Report</td>
</tr>
<tr>
<td>G</td>
<td>AF FORM 711f - Nuclear Accident/Incident Report</td>
</tr>
<tr>
<td>H</td>
<td>AF FORM 711g - Life Sciences Report of an Individual</td>
</tr>
<tr>
<td>I</td>
<td>Unsatisfactory Report</td>
</tr>
<tr>
<td>J</td>
<td>Teardown Deficiency Report</td>
</tr>
<tr>
<td>K</td>
<td>List of Technical Orders Not Complied With</td>
</tr>
<tr>
<td>L</td>
<td>AFTO Forms 781 Series</td>
</tr>
<tr>
<td>M</td>
<td>AF FORM 5</td>
</tr>
<tr>
<td>N</td>
<td>Statements</td>
</tr>
<tr>
<td>O</td>
<td>Rebuttals</td>
</tr>
<tr>
<td>P</td>
<td>Orders Appointing Inves Board</td>
</tr>
<tr>
<td>Q</td>
<td>Board Proceedings</td>
</tr>
<tr>
<td>R</td>
<td>DD FORM 175 or DD FORM 1080</td>
</tr>
<tr>
<td>S</td>
<td>DD FORM 355 (Wgt-Balance)</td>
</tr>
<tr>
<td>T</td>
<td>Private Property Damage</td>
</tr>
<tr>
<td>U</td>
<td>Damage to Aircraft</td>
</tr>
<tr>
<td>V</td>
<td>Communication - Transcripts</td>
</tr>
<tr>
<td>W</td>
<td>Additional Data</td>
</tr>
<tr>
<td>X</td>
<td>Other Forms</td>
</tr>
<tr>
<td>Y</td>
<td>Diagram</td>
</tr>
<tr>
<td>Z</td>
<td>Photos</td>
</tr>
</tbody>
</table>

Approved For Release 2001/08/29: CIA-RDP71B00590R000100010001-4
PRE-MISSION BRIEFING

Gentleman, this is __________ briefing on 5 January 1967, at 1030 hours, for the scheduled flight of 123, flown by __________. Take-off time is scheduled for 1200 hours. Call sign is Dutch 45. Chase aircraft on the mission, first chase will be __________ in 266. Boxer II and your recovery chase will be __________ we don't have a call sign for it yet, but the tower will advise you what it is when you come back in.

The purpose of the mission is training, gathering some performance data. The flight will be flown on a __________ route. This runs like two "Great Wastes" and should bring you back home high, after about four hours enroute. On the mission you will have air refueling, ARC-50, INS, SQDM, Package Type I, HF, __________ Tanker Beacon, a boom interphone and a light fuel load at take-off. __________ will give you a rundown on the aircraft status.

The aircraft is at hanger 10 and the total indicated fuel load is 55,000 lbs. Gross weight at brake release will be 105,000 lbs. O.L. at take-off will be 21.2%. Standard heavy brakes, Y/1 engines, H-2 fuel controls, no known engines peculiarities. The airplane is ready. The left and right console lights are out and also the right hand spot light is out. The left hand spot light works. The left hand aft bypass door light has been disabled. Concerning squawk 6781, we'd like the procedure if the aft bypass breaker pops to investigate what happens at the other selector switch positions. You will be started and towed backward from your normal starting position and would like the oscilloscope on at 1.3 and off at cruise or descent, that's all.

__________ will cover the route of flight for us.

__________ this is the __________ and I have two refuelings. One in the Falcon area 15 minutes after take-off, and the Hawk Bravo area which will be your second refueling after your first leg out to the east. For your INS position 00 at Home Plate, one (01) will be your ARCP for Falcon above Current. Two (02) about forty miles north of Current. Three (03) you will make a left turn and come back out to a point 50 miles west of Current, and four (04) will be your end A/R point back at Current.
Position zero five is a point exiting the SCA position, zero six will be your first turn point which is approximately 30 miles southwest of Kansas City. Seven will be the apex of the turn the second point in your turn. Eight will be the position prior to start descent coming back in the Hawk Bravo refueling area. Position zero 9 will be your ARCP for your second refueling. Ten will be the northwest portion from your second refueling track. Eleven will be the point again approximately 60 miles west of Currant, and twelve will be your end A/R point again back at Currant. Thirteen will be this point for SCA exit which will be 39-CON 112-CON and 14 this time will be the point approximately 90 miles southwest of St. Louis. Fifteen, the double point in your turn. Sixteen is the intermediate point halfway down your track coming back into home plate, and seventeen you will be at home. You will have an enroute descent to home plate and you have been briefed on your performance status, type climb, descent and so forth. For your fuel at end A/R your first refueling your fuel to continue is 66,200 lbs. You will going out at this point southwest of Kansas City. Your fuel minimums at that point 30,800. If you should hit 30,800 prior to hitting the turn point, you can turn. Coming back in your second refueling your minimum when you come into the ARCP position 09 is 11,500 lbs and that is your abort fuel. In this case, if you are below 11,500 lbs right after you get with the tanker and not taking fuel, come home.

Yeah, that should get me over home with 7,500 lbs?

Yes, 7,500 over home. At the end of your second A/R your minimum to continue is 66,300 lbs and your programmed and minimum fuel are the same for the entire cruise. Out at your far eastern turn point at position 14, your minimum is 28,300 lbs and if you should hit 28,300 prior to hitting your turn point, you can turn short. At position 16 which is the intermediate point coming back on your final leg, inbound home plate your minimum is 13,800 lbs and at home due to your enroute descent your minimum fuel is 7,500 lbs. For single engine on both cruises, outbound to the east, Denver is your maximum. I’ll caution you not to pass a usable alternate if you lose an engine. For your Q-Bay operation, the only difference on your film strip will be the fact you do not have EWS which appears on your strip and also for Package 1 due to the time of day you’ll go to Q-2 prior to take-off at which time also your A/R beacon will be on. You go to 3 at your start
cruise on the first leg, go back to 2 at start
descent on the first leg, and remain on 2 for the
remainder of your flight until after landing where
you will go to 0. In other words the only time
you'll operate is on the first leg. If you have more
than 3/10 cloud cover, you can use your own judgement,
if you can, go to the C position. Also I'll brief
you on the ARC-50. When ever you operate the ARC-50,
they would like to have a notation on your tape,
if you would. For fixing

You know that is sort of ridiculous, you operate the
damn thing everytime somebody talks to you. Why
not hook the oscillograph up to it if they want it.

Yes, they asked me that the other day, they wanted
me to remember when I operated it.

It's pretty hard and I doubt if you would ever get
them all. Just like you say, you are operating it
continuously. If you get a few of them, it helps,
see part of our problems is interference.

How about on external too?

That is affirm, yeah.

Well you wouldn't be running the package on external,
All they want is the package off right?

Yeah, it will be on the first leg, yeah.

Ok.

When you can. OK for fixing the first time around—you pass over Schilling—both times and they would
like to have a data fix the first time around, and
on the second leg they would like to have an up date,
and that should be about two hours fifty eight
minutes I believe after take-off for the up date.

OK. On this first one, that must have been added on.

Yes, just a data is all they want, if you remember.
The one we are primarily interested in is the up date.
For your SIP, and this is also recorded on your card, we
would like to have it on a start cruise on the first
leg and off at the ARCFF for the Hawk refueling area.
Back on when you start cruise on the second leg and
turn it off over home when you come in on the final
right?

3
OK.

Again, we would like to have an "A" code after take-off and each time that you're in the APEX of these turns out in the far eastern portion which will be position 7 and 15. OK, your emergency bases we have Fallon in 27, Hill position 28, Buckley 29, McConnel 30, Forbes 31, Slythville 32, Little Rock 33, Barksdale 34, Clinton Sherman 35, Amarillo 36, Kirtland 37, and back at Edwards for 38. Again I'll remind you on the film strip it does not have EWS on it. But, the package, the only time I want you to operate it is when I specified, which is correct on your cards. From start cruise the first time to start descent the first leg, then just leave it in 2 until after you land. Do you have any questions?

No.

Weather Briefing, ____________

__________gentlemen, I ask your indulgence for the lack of weather on this side but as far as your route is concerned the reason I didn't make any extended effort to give you the rest of it, is that it is clear, clear, clear or high scattered over here at this jet and down here at the forward side so that you have a strong northwest clear area where everything is cleaned out. There's the remnants of an old arctic front lying through here that's washed out. Actually the southern portion of the route contains no problems. Our weather problems are contained over here in this part where I do have them --- so, will finish up saying all this area, Little Rock Clear, Slythville clear, Barksdale high scattered, here scattered. Now as this ridge line progresses over, maybe by the time you make your second go around you might be picking up some thin broken cirrus but I still think it is the type that will be almost transparent that you will see through. I think it will be getting a little heavier for you on the cirrus but is is strictly high cirrus and absolutely no problem involved on that. That's just only over in this portion and as you stay down south it will still be clear to scattered along that portion of your route. The only thing of significance is that your single engine winds on this last path as you get on over here are going to be running at 300 at 100 knots at 30,000 ft. They are really whomping along there good. And then as you get along toward us they will be leveling off at 250 for
the first third at about 100 so you are going to
be clipping a pretty good, a stiff wind coming back
on at 30,000 ft on 260. Actually at 35,000 feet along
this jet core some where along here, we lost it
between reporting stations, but its clicking along
about 140 knots at 35,000. We haven't had any reports
yet from anybody via the tanker on low level
turbulence but we are still expecting on climb out,
due to the vicinity of this, its fairly uniform on
all sides so this negates the shear except up north
where it drops off unexpectedly and it gives real
turbulence. You might get some occasional isolated
severe but we are still looking for light or even
occasional moderate on you and that will just depend
on where this jet max is. You may be lucky and get
absolutely none out of it yet you might be expecting
some on climb out on that. Your runway temperature
is, will be about 50 degrees. It's leveled off pretty
much now that we've leveled off on the pressure
altitude is still 4,550 and I have already pointed out
your single engine winds. Now your temp deviation.
We are running about a plus three in here and we will
go all the way over until you will probably hit a
minus one, on this end and about a plus one ———
this so you will average about zero. On your temp
deviation you will be operating at altitude much
colder over on your far eastern portion than you will
over us. We are warm, running actually about
a plus five over the station on your temperature
deviation ah, the rest of your alternates that you
will be considering, and these are looking down.
Now Fallon is running 10,000 scattered and 15 and we
get a special that they are down to 500 feet obscured
and 3/8 in a snow flurry and ten minutes later they
are back up to 9,000 broken and 10 and Hill who has
been running predominately most of the day about 5,000
broken and 10,000. Hill went on down in a special
to something like 1,000 broken or more than that,
they were really down about 500 and 2 in a snow
flurry, so there are instablity snow showers coming
along the line and they are popping in and out.
So both of these are OK but they are shaky. You must
expect that they would just frequently pop down in
a shower but, its going to be nothing of any duration
that would hold them down, its just going to be a
brief shower but could be at the wrong time so those
are not really any number one type but Buckley is right
on the fringe but it'll be just running some mild
scattered variable broken. Its also excellent and
although Edwards has some middle clouds, everything

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
to the south is __________. These are the only two that you will have to think about and we will keep you informed on those, so I expect them to come down, they'll just pop down and right back up and with time they should even improve __________ no sweat. We ourselves now are in this nice big wide hole but Fallon went from scattered to broken there and there are these little lines, as I say associated in here and they may swing down thru us and we could get some more middle cover in here and go broken again for a brief period this afternoon. The thing is that our gusty surface winds shouldn't affect you too much but there is a good cross wind component should be up to isolated at times up to 25 knots. Right now we are still running about 20 to 25 out of 200 degrees. Ten mainly but with our gusts to 22 and isolated up to 28 knots. Your temp profile is in the green and you notice that up to 30,000 on up to 70,000 we will average about a minus five cold and then when you get up to altitude we are back again to the plus 4 or 5 over our local station. Do you have any additional questions or comments?

Nope

Thank you.

Tunnel request is going to be for 29,000 sir, the IFR pick up will be in the S0A and of course the start descent route is on your chart there and is straight and back into home. I'll give you your refueling information. There will be two refuelings, your first tanker call sign is Cute 62.

Cute?

Cute, C-U-T-E, Falcon 350, time will be 1215 Flight Level 300 and that will be a level refueling. Standard airspeed of 315. ARC-50 external primary 17. Secondary 7. They should top you off at 31,000 have 7,000 for the Chase, air to air TACAN channel 96. Now both of these tankers, if you don't get a good pick up on 96, check with them. There are two tankers cancellations and some substitutions this morning, and they may inadvertently have it on 95. Some have 95 and some have 96 and they may not have gotten the word and of course they have tanker beacons. Your second refueling is with Cute 51, that is at the Hawk Bravo 272, your time will be 1400. And that will start at 30,000 and you will have a climbing A/R to 35,000 feet.
500 feet per minute your last 6 minutes, same air speed same Com. They should have about 60,000 off load for you there, and they are also supposed to be on TACAN 96. Chase will be with you until after you finish your first refueling then chase will rendezvous with the second tanker and be there to observe the second refueling, then chase will come home. If the timing is right the chase won't need any fuel from the second tanker. But they should have a few thousand pounds left if there is any delay.

There is supposed to be two tankers you say on the first one?

No, there is only one.

Oh, second tanker?

Yes, second tanker. For HF primary you will have 6712 this will be for the entire flight. Secondary is 13217. Your code words are on your card. It's on your first one there. And your altitude designators are different now you know?

Yeah,

There are no pertinent NOTAMS for any of your alternates they are all in good shape. Local Nav Aids are in, Airdrome is OK. Ice still on west side of over run and the lake bed has runway 9 and 27 open. Gunnery ranges are hot, but there are no foreign students. Green River will be cold for your flight. You should have no SQA traffic, no ash cans to worry about. You can check your Air to Air TACAN of course on the ground if you have any trouble refueling why check it coming back in, and the latest PIF is still number 0. Oh, one reminder also on the second refueling, 150 miles out from the ARCP you should give the tanker a call. Suit time is 1055 which right about now, and start engine time 1140. Anybody have anything extra to add? Do you have any questions?

Nope.

That concludes the briefing have a good flight.
TRANSCRIPTION FROM HF TAPES (AND HANGER AREA RECORDER) AND TOWER TAPE

CALL SIGNS:

RAYBOLD CONTROL - COMMAND POST
RAYBOLD 45 - ARTICLE 125 TRANSMITTING ON HF
BOXER 17 - CHASE AIRCRAFT
DUTCH 45 - ARTICLE 125 TRANSMITTING ON UHF
APEX - TOWER
SAUCY - GCA

NOTE: HF TIMES ARE LOCAL (PST)

25X1A TIME FROM RAYBOLD CONTROL FROM DUTCH 45
1519:38 Raybold 45, Raybold 45, (Slightly garbled transmission)
Raybold, request your progress Hello - Raybold 45 - do you
1519:56 read?
1520:06 Raybold 45 - you're breaking up badly. If everything is
25X1A "Jo To", give a series of Rogers
1520:16
25X1A 1520:40 ah, Roger, Roger 45,
25X1A I have received some "alpha" and understand everything is ok
1520:50

SECRET
1520:55

FROM RAYBOLD CONTROL

1521:00

1521:40

Raybold control, Raybold 45,
how do you read me now?

25X1A

1521:50

Roger 45, I read
you about 3 by - go ahead.

1521:52

25X1A

1522:08

ah, Roger, Roger 45
we are reading your alphas, thank you
very much - Raybold out

1522:16

1545:23

Roger, Roger
ah, Raybold control, Raybold
45

1545:30

Raybold 45,
this Raybold go -

1545:32

ah Roger ah, I've got a little
bit of a problem here, I'm
abeam Farmington - I have
7500 lbs and I don't know
where it's gone - Remember I
told you I lost about a thou-
sand? Well I've lost about
another thousand, ah I think
I can make it but ah (garbled)
1546:04 45 this is control —
say again transmission

1546:07

1546:36 45 this is control
again, unable to read, unable to
read — can you say again last trans-
mission slower please

1546:43

1547:48 Raybold 45, Raybold
45, this Raybold control if you're
able to make it back to home
plate give us the A/OK button.

1548:26 Raybold 45, if you
can make home plate, if you can make
home plate OK with no problems give
me an alpha, give me an alpha

1548:38

1549:21 Raybold 45, Raybold 45,
Raybold request another series of
alphas if you can make home plate,
over

1549:30

1549:37 ah, Raybold 45 you're
breaking up badly, I'm reading you
about 2 by, say again

1550:19 Raybold 45, Raybold
request you go ah Echo, primary,
back to primary, if no answer
return this frequency

ah Roger ah — (garbled) 6000
pounds (garbled)

Roger (garbled)

No transmission

Raybold (garbled)

(no answer)
TIME

FROM RAYBOLD CONTROL

- 25X1A

Raybold 45, Raybold 45

Raybold

- 25X1A

Ah Roger Raybold 45,

Raybold - What are your intentions and are you having any difficulty - over

- 25X1A

ah Roger, Roger, understand that you are 4600 pounds present time and about 200 out, is that affirmative

- 25X1A

understand that you are 4600 pounds present time and about 200 out, is that affirmative

- 25X1A

you're going to have to make your own decision whether to go to Albuquerque or press on whatever you think's the best

- 25X1A

Ah, Roger, are you uncertain as to whether you can make home plate, is that affirmative?

FROM DUTCH 45

Ah, Roger Raybold (garbled)

Roger, I've been trying to tell you all along I don't know where my fuel's going to, ah (next part of transmission overlayed by local UHF transmission)

Ah, you were cut out by UHF, say again

That's affirmative, that's affirmative

Say again - I can't read you, ah say again - this is Raybold 45
FROM CONTROL

FROM DUTCH 45

Well I'm going to try, I don't know, I'm closer there than I am any other place

Raybold 45, Raybold 45, Raybold 45
Hello Raybold 45, Raybold control how do you read?

Ah Raybold control - Raybold 45 go ahead
Well I'm trying to stretch it as far as I can. I'm making a 300 descent, I'm 130 miles out and and I have 4000 pounds - I don't know where it's going though
Ah roger - it looks like - unless I'm losing it some place I should be able to make it - I'm 120 miles out with 3900.
Roger - I better go back to Los Angeles right now
Roger I'm passing through 530
Ah maybe I should slow up to about ah, 250 then.

Well, do the best you can - keep coming and we'll have Saucy give you a vector

Roger

(Probably went to Los Angeles Center here)

Ah Raybold control, Raybold 45
TIME FROM CONTROL
25X1A Ah Raybold 45, Raybold control, go ahead

FROM DUTCH 45

1600:26
25X1A it's your decision

Roger, I just can't maintain that altitude - it's just sucking up too much fuel. I'm 85 out now and I have 2700 - I'm passing through 430 flight altitude

Well I don't have much of a decision to make there isn't any other place to go.

1600:56
25X1A OK - are you headed directly for home plate?

Roger, right straight home on a heading of 250

1601:05
25X1A OK - if you see that "thunderbird" lake as you pass over it you've got that one alternate decision - that's only about 60 miles east of here

Roger - the VIS - ah - OK I just got a fuel low pressure light on everything

1601:34
OK - get on the UHF with your chase - we should be able to pick up on UHF ah Saucy channel, they'll be standing by for you
FROM DUTCH 45

Roger I'm going to have to jump out of this thing at 22000 feet flaming out

Note: Times are recorded on tape by tower and are not synchronized with times on HF tape. Tower times are Greenwich Mean Times (Local + 8 hours).

0004:55

(Apex) Dutch 45 Apex

Hello Apex this is Dutch 45

Roger, Dutch 45 here. Both of the engines are quitting - I'm 70 miles out, on a heading of one zero zero. I'm going to stay with it as long as I can make the engines run.

(Apex) Dutch 45, Roger,

standby this frequency for Saucy.

(Saucy) Dutch 45, Saucy

I'm going to get Ray - they both flamed out, I'm going to have to get out now.

(Boxer 17) Understand you're getting out now - what's your DME
TIME FROM CONTROL

FROM DUTCH 45
Roger, I'm 67

(Boxer 17) On the one zero
zero radial

0005:36

Roger
TRANSCRIPT OF PILOT'S DICTECT TAPE RECOVERED FROM WRECKAGE

(The following was transcribed from one unbroken piece of dictect tape)

CUT THE LEFT.
I'M READY TO START THE OTHER.
CUT THE RIGHT.
CLEAR TO RESET GENERATORS.
DISTANCE TO GO AND GROUND SPEED ZERO.
GENERATORS ARE ON.
OK, PRESENT POSITION 37:14 - 115:49.
DESTINATION IS, AH SIPS ON, DESTINATION 35:14 - 115:23.
DISTANCE TO GO 122, GROUND SPEED ZERO AND AH, THINK THE CARD IS SWINGING AROUND TO
THE SOUTH HERE, JUST STANDY ONE, OK, HEADING IS 180, STEERING IS 170.
THAT'S AFFIRM.
VARIABLE FIX, STORE, REJECT LITE, LITE WENT OUT.
SIP IS OFF.
EXTERNAL POWER DISCONNECT.
TRIM CHECK SCHEDULE.
ROLL.
READY FOR CANOPY.
SEALS ON.
ROG, AS FAR AS I CAN TELL, ROGER, I'M HOLDING THE BRAKES, BRAKES ARE OFF, BRAKES ARE ON.
SITTING HERE TAXIING, DUCT 28, WAIT A MINUTE, DUCT MUST BE 10 AND DOWN IS 28.
STORED 40, GROUND SPEED ONE, NO REJECT LIGHT.
RIGHT AFTER TAKEOFF, WE GOT SUIT 28, DUCT 10.
OFF TANKER WITH 67.
LET'S SEE, I DROPPED OFF, AH, THE TANKER ABOUT FIVE MILES PAST THE ARC.
OK, I'M CLIMBING OUT NOW, I GOT AH, DUCT TEMPERATURE OF AH, SUIT TEMPERATURE 28,
DUCT 12 - THAT'S AFTER REFUELING AND CLIMBING OUT.
1.3, ON COMES OSCILLOGRAPH.
OK, I'M GOING TO REDUCE THE POWER AT 1.45, THAT WAS A DISTANCE TO GO OF 65, FUEL WAS

Approved For Release 2001/08/29 : CIA-RDP71R00590R001400010001-4
(Special Handling Required. See AFR 127-4)
57,000 Pounds, altitude was about 38,000.

1.7, going to B.

OK, I WOULD CALL THIS MODERATE TURBULENCE, STARTED AT 48, STILL HAVE IT HERE AT 52, GOING TO HAVE TO SLOW UP A LITTLE, IT'S KNOCKING THE AUTO PILOT OFF.

AUTO PILOT WOON'T STAY ENGAGED.

ALL SAS IS ON AND FRS IN.

I FOUND A CIRCUIT BREAKER IN THE BACK POPPED OFF.

I'M GOING TO TRY IT AGAIN, OOPS, WENT OFF AGAIN.

AND THERE'S A CIRCUIT BREAKER BACK THERE, AH, AUTO PILOT, YEP THE AUTO PILOT JUST WON'T STAY ON, DON'T KNOW WHAT CIRCUIT BREAKER IT IS, BUT KEEPS POPPING OUT.

2.5, my distance to go is 657, IN2 - RIGHT AT THIS SPEED, AH, IT'S FLYING KINDA SCREWBALL.

I'M RIGHT AROUND 45,000 POUNDS AND 400, 66,000.

TRYING TO PICK UP A LITTLE MORE SPEED NOW, SINCE ITS SMOOTHING OUT A LITTLE.

AND NOW I'M AT CRUISE AN HOUR AFTER TAKEOFF, SUIT 28, DUCT IS 3.

2.7.

I THINK THAT THE WEATHERS GOING TO BE NOTHING, SO I'M GOING TO HAVE TO PUT IT ON THE CLOUDS.

OK, HERE AT CRUISE, THE RIGHT CIT READS 30 DEGREES LOWER THAN THE LEFT.

Yeah, I believe it's the right, because we're doing 3.08 and the left one is showing 390 and the right one is showing 365, that's more like it.

AT 367, AND 36.6, 500 POUNDS OVER PROGRAMMED.

I DON'T KNOW WHAT HAPPENED, BUT IT IS.

OK, I'M NOT GOING TO BE ABLE TO GET A FIX AT SCHILLING, IT IS COMPLETELY UNDERCAST.

SETTING HERE AT CRUISE, ALSO, 370, 76,000 FEET, 3.09 TO 3.1, CIPS AROUND 15, AND THE BARBER POLE IS ABOUT 15.

OK, AT THE TURN, 31.5, STILL RUNNING AROUND 600 POUNDS OVER.

OK, AT TAKEOFF ONE PLUS 33, I'VE GOT A SUIT TEMPERATURE OF 28, DUCT IS ZERO.

AND I'VE USED THE RADIO ABOUT 3 TRANSMISSIONS, 4 TRANSMISSIONS, FROM TIME I PUT THE PACKAGE ON AND THAT WAS - CAN'T GIVE THE EXACT TIME.

I'M SORRY, I FORGOT, OK ABOUT ONE HOUR AND FIVE AFTER TAKEOFF.
PRESENT TIME, ABOUT TEN MINUTE INTERVALS, IT IS NOW 1:35 AFTER TAKEOFF, 1:35, OK
HERE'S THE READING 1:35 AFTER TAKEOFF, CONNA USE IT AGAIN, ANOTHER TRANSMISSION, OK
THERE WAS ANOTHER TRANSMISSION, 1:36 AFTER TAKEOFF, AND THERE WAS ANOTHER TRANSMISSION,
ONE PLUS 38 AND ANOTHER TRANSMISSION.
I THINK THE RIGHT CIT IS THE PROPER ONE, FOR THE GROUND SPEED WERE MAKING AND THIS MACH
NUMBER, ABOUT 20 DEGREES, THE LEFT IS 20 DEGREES HIGH.
OK, AT POSITION 09, 16.6 AND PROGRAMMED 15.4, EXCUSE ME, THAT WAS POSITION 08, I'M
SOSRY.
OK, I'M READY TO START DESCENT AT 260, HAVE 15.8.
OK, I MADE IT TO POSITION 08 HERE WITHOUT POPPING.
OK, GOING TO B, I HOPE THEY STAY TOGETHER.
DISTANCE TO GO 192, FLIGHT LEVEL \underline{300} AND I ONLY GOT 15.6 FUEL, 330, OR THREE, OR
WELL I HAVE ABOUT 310 RIGHT NOW KIAS.
2.5, GOING BACK TO 6800.
GOING THROUGH FLIGHT LEVEL 600 AND AH, 295 KIAS AND 1.74MN AND AH LET'S SEE, PULLING
6800 RPM.
15.3 FUEL, AND I'M 117 MILES OUT FROM ARCP.
1.6, GOTTA COME BACK TO ABOUT 6000.
SO FAR THE CIRCUIT BREAKER HASN'T POPPED.
MACH ONE, 15,000 POUNDS OF FUEL, 39,000 FEET, 295 KIAS, AND DISTANCE TO GO IS 70 MILES.
AND IN THE DESCENT, I HAVE A SUIT 28, DUCT READING ZERO, COCKPIT 65.
OK, AT FLIGHT LEVEL 290, FLIGHT LEVEL 290, AND I'VE GOT 14,000 POUNDS AND 52 MILES
DISTANCE TO GO AND I WAS AT 300.
THE TIME IS 2 HOURS NOW, 2 HOURS AND ONE MINUTE TO BE EXACT.
LET DOWN TIME, BY THE WAY, WAS 1 PLUS 50, AH 49 AT LETDOWN.
COMING BACK AND I'M WAY TOO SHORT AND I'M BELOW BINGO FUEL RIGHT NOW AND I'M STILL
300 MILES OUT.
(COMMUNICATION WITH TANKER)
HOW DO YOU READ MY?
LOUD AND CLEAR, LOUD AND CLEAR.
ROG, I NEED ANOTHER CLEARANCE.

SECRET
YOU KNOW WE'VE BEEN DOING PRETTY GOOD LATELY.

THIS IS ABOUT THE SECOND OR THIRD ONE I'VE HAD.

AND WHEN THEY ARE WORKING THEY WORK REAL GOOD.

NO KIDDING.

AH, STAND BY A SECOND.

AH, I'M SHOWING 43, KEEP IT COMING, I'LL TELL YOU WHEN TO CUT HER OFF.

ITS KIND OF HARD TO SEE THE LIGHTS, SO IF I START GETTING REAL BAD LET ME KNOW.

OK, WHAT'S ALL THIS STUFF ON GUARD?

YOU HEARING THAT?

YEAH, BOXER, THAT'S OUR HOPPY CHOPTER, YEAH, THAT'S OURS, BOXER 44 IS OUR BOY.

ROGER.

DISCONNECT TRANSMISSION UNREADABLE.

DUCT 10.

OK, 1.4, OSCILLOGRAPH ON.

I'M HITTING THAT TURBULENCE AGAIN, SO I DON'T KNOW IF I'M GONNA GET TO MAKE A DECENT CLIMB OR NOT.

OK, GOING ON THE CLIMBOUT HERE.

TAKEOFF 2 PLUS 43, SUIT IS 24, DUCT IS ZERO.

BY THE WAY, THIS IS REDUCED POWER CLIMB ALL THE WAY OUT TO SPEED.

AT 807, WE HAVE NORMAL CRUISE CLIMB, WE GOT 3.03, 40,300 POUNDS, AND WE GOT 400 KEAS.

OK, WE GOT AT 810, 3.13, 399, FEET AND 39,800.

CRUISING HERE PRESENTLY AT 385 KEAS, 74.4, 3.1 AND THE SPIKES ARE 24, AND THE DOORS ARE ABOUT 95 PERCENT, 37,500 POUNDS OF FUEL AND THE FUEL FLOWS ARE RUNNING AT 16.2 EACH.

784 AND 744, I'LL FLEX THAT ONE UP A LITTLE.

OK, RIGHT NOW, I'M RUNNING ABOUT A HUNDRED MILES SHORT, AND AT THIS LOWER CRUISE AT 390, 33,600.
END OF TAPE.

(The following additional comments were recorded from eighteen bits of dictact tape and are not necessarily in sequence)

LEFT 17 AND THE BARBER POLE IS 15', RIGHT 17 WHICH IS A HAIR BEHIND AND THE RIGHT DOOR IS A HAIR OPEN.

MIN BURNER SPECIAL 400 SCHEDULE.

AND I'M 297 OUT.

16,000 POUNDS OF FUEL.

386 KIAS AND ABOUT THIRTY--.

I REMEMBER I GOT OFF TANKER WITH SIX--.

DURING THAT TURN.

FUEL, AH, THIRTY ONE.

TO GO, FEET.

I GOT 18 ON THE LEFT ENGINE.

I DON'T KNOW WHAT'S WRONG HERE.

DISTANCE TO GO.

THOU.

3.1.

SOMEPLACE.

I CAN'T FIGURE IT OUT.

LESS, I'M GOING IN.

SEVENTEEN THREE.
REPORT FROM FAA FLIGHT CENTERS ON DUTCH 45 FOLLOWING SECOND REFUELING. (ALL TIMES ARE ZULU - LOCAL + 8 HOURS).

2233
Reported climbing through FL 400 to SLC.

2233:12
Ask Salt Lake: How does my track look for on course?

2233:40
SLC: It appears you are from the last run you made, pointing a little bit north of course.

Pilot replied: Yes, that's what I thought to. How much north would you say I am?

SLC: Right now, you are tracking 040.

Pilot says: And did you pass on to you that I'm going to have to probably turn a little short on this particular leg of the flight.

SLC: Advised him to advise the center concerned, and would be no problem.

2235:05
SLC: Briefly lost radar contact, and told him when radar came back they would give him a position on his track.

Pilot replied: It's starting to shape up a little bit now.

2236:25
SLC: Your track looks real good toward MLP/047/98.

Pilot: Roger thank you.

2237:10
Pilot: Picked up moderate turbulence starting at FL 470 and said "Quote I'm still in it, I'm at 540".

2239:45
SLC: States aircraft was cruising J-84, 10 west of SL/Denver Boundary

2240:20
Pilot reported level above FL 600.

2244:55
Denver Center placed 45 over Grand Junction and was 6 minutes later then est. Re-estimated over Alamosa, Colorado, 2326Z, above 60.
2308:50 25 miles south of Whiteman AFB

2313 Dutch 45 handed off from Kansas City Center to Memphis Center and advised Dutch 45 was 15 minutes late. Memphis said there was nothing unusual and Dutch 45 flew route as planned.

2328:15 Ft Worth handed off to Kansas City 40 miles south of Ponca City.

2334:15 45 mi of Gage Okla., Pilot reported above FL 600.

2339:25 ABG handed off to Denver Center position given 30 miles south of Tobe, Colorado.

2349:30 Conversation between Denver and Pilot. Bam request if you are having difficulty.

Pilot: Quote "Roger I'm running very low on fuel and starting my descent at this time. I do not know if I can make it or not".

2350 20 miles east of LA/Den Boundary 5 miles N of J-58.

2351 Denver advised L/A. Aaf reported he is very short on fuel, he is leaving altitude above FL 600. Now he reported leaving his altitude, what ever that was.

2351:50 Denver Center initiated 2 calls to Dutch 45 and had no response from pilot.

2352 4 miles west of LA/Den Boundary approx 8 miles south of J-58.

2353 Pilot declared an emergency and stated only low on fuel.

2354 Pilot squawked emergency and turned it off again, still reporting above FL 600.
2355 Crossing V-257, 28 miles south of ELG.
2355:45 Pilot reporting leaving P/L 600 and descending.
2358:50 11 miles east of Hurricane Aprt, pilot reported leaving P/L 510. Reported descending.
SUBJECT: Guide for using tape transcribed from Salt Lake Center
master tape. Salt Lake advises that master tape will be
held for 60 days and can be obtained by Yuletide. Operations
through appropriate channels. All times ZULU.

2021:25 Bungalow requesting clearance from Salt Lake for D-45 first
leg of flight.
2035:25 Bungalow effecting hand/off to Salt Lake 1st leg of flight.
2037:15 D-45 reporting out of FL 290.
2043:00 D-45 reporting out of FL 410.
2048:00 Salt Lake effecting hand/off to Denver.
2149:40 Denver advising Salt Lake that D-45 was requesting descent
to refueling altitude returning from 1st leg of flight.
2151:20 LAX advising SLC of D-45 refueling intentions.
2152:00 LAX advising SLC of D-45 position.
2221:55 Bungalow requesting clearance from SLC, D-45 2nd leg.
2232:05 Hand/off from Bungalow to SLC, 2nd leg.
2233:00 D-45 reporting above FL 400 to SLC.
2235:20 D-45 asking SLC about his track. Also advising SLC of his
intentions to cut route short (this portion becomes garbled.)
SLC advises D-45 that they have lost Center's radar and 45
replies "IT'S" beginning to shape up now.
2235:50 SLC advising 45 about his track.
2237:10 D-45 reporting turbulence to SLC.
2237:50 SLC advising Denver of 45's estimate and intentions to turn.
2239:00 SLC hand/off to Denver.
2240:20 D-45 reporting out of 600.
2248:45 Bungalow requesting SLC to check on D-45 problems.
2351:20 Denver reporting D-45 problems to SLC.
2352:15 D-45 position verified with SLC & LAX.
0002:35 Bungalow asking SLC if LAX was still working 45.
0005:30 Bungalow asking SLC if he was still painting 45.
0005:55 SLC requesting status of 45 from LAX.

25X1A

SECRET.

FOR OFFICIAL USE ONLY
(Special Handling Required... See AFR 127.4)

Approved For Release 2001/10/25 : CIA-RDP71B00590R000100010001-4
tape was not recovered. Approximately one inch of tape was missing from each layer of tape on the reel for this flight and additional previous flights. The damage was confined to impact only, there was no fire damage. Only portions of the outer metal cover of the assembly were recovered in addition to the tape cassette which crushed inward around the take up reel. A 2½ inch piece of unrecorded tape was captured in the cassette, indicating that the supply reel had not run out of tape. The supply reel and its remaining contents were not recovered. Further effort to obtain useful data from the recorded portions of tape was abandoned since later and more useful information was obtained from the Dictet tape, the SCIM tape and recordings of air-ground communications.

d. All tapes and portions thereof from the Dictet and SCIM systems were recovered as single items and detached from the equipment in which they were contained. The crash recorder tape was found captured in the cassette which was detached from the main assembly and with the top cover missing.

a. The two cameras that were installed in the canopy were not recovered up to the time this report was written. It is believed that acceleration forces caused them to become detached from their mounts at or soon after the canopy was jettisoned. It is noted that in every other case wherein canopies were recovered from these aircraft, the standby compass remained attached to the canopy and in a repairable state. Improved camera-to-canopy attachment can be attained.

C. INSTRUMENTS:

1. System Description.

 a. Most instruments installed were conventional types, particularly those associated with navigation systems other than the INS and ARC-50 UHF. Engine speed is displayed in rpm instead of percentage rpm.

2. Investigation and Analysis.

 a. The following instruments were recovered; information derived therefrom is included if attainable:

 (1) INS DISTANCE TO GO - GROUND SPEED INDICATOR. The drums were captured at "0067" nautical miles to go and "0383" knots, ground speed (see Tab 2). These values are considered valid and froze there at the time the generators went off the line. The "miles to go" value coincides with the pilot's last report at about the time of flameout and very shortly before ejection. The ground speed value indicates that the airspeed could have been considerably greater but not nearly the speed attained in the steep dive that ensued.

 (2) ALTIMETER (pressure type, dial only).

 (3) FUEL QUANTITY INDICATOR (dial only).

 (4) EGT INDICATORS (2 each).

 (5) EFN INDICATOR (dial only).

 (6) HYDRAULIC PRESSURE INDICATOR.

 (7) CLOCK (dial, minute and hour pointers). UV light inspection showed 4:05 PST.

 (8) Unidentified dial of an instrument with a 0 - 60 scale, dial is white and figures are black.

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
(Special Handling Required. See AFR 127-4)
D. FINDINGS:

1. Variable frequency AC power was available up to the time of engine flameout.

2. After engine flameout, the batteries provided DC power up to the time the last transmission was made on UHF. DC power was most probably available until the airplane was committed to crash.

3. There was no evidence to indicate a failure of the regulated AC power system (inverters).

4. Engine flameout occurred at a point 67 nautical miles from the home base at a ground speed of 383 knots.

5. The location of the Dictet recorder was conducive to major damage of the tape.

6. The crash recorder has no success history in crashes involving these aircraft in which it was installed.

7. The Signal Conditioner and Data Monitoring system could replace the crash recorder if the tape cassette could be made crash and fire resistant to a reasonable degree at the sacrifice of vertical acceleration information now recorded by the crash recorder.

8. The systems discussed in this report operated as designed with the exception of the crash recorder, in that the tape cassette and tape therein is highly susceptible to crash damage.

E. RECOMMENDATIONS:

1. Consider the relocation of the Dictet recorder to the canopy.

2. Consider the replacement of Dictet recorders with a better designed device which has standard tape speeds, and better fidelity.

3. Explore the possibilities of modularizing the tape cassette portion of the Signal Conditioner and Data Monitoring equipment with the objective of making it crash and fire proof to further insure recovery of undamaged tape.
LIFE SUPPORT INVESTIGATION AND ANALYSIS

The pilot and seat were found separated by a distance of 65 feet on a 45 degree slope 8 miles from aircraft impact. It was apparent that the pilot was in the seat at the time of initial impact 25 feet above the final resting point of the seat that had bounced and slid down the slope, arresting in a small tree. Close examination of the initial impact area revealed a large depression caused by the left rear portion of the seat. Buried under soil surface was a number of sheared rivets identified by size, type and paint color as seat rivets. In addition, numerous pieces of paint flakes were found under the soil surface in the impact area. At an appropriate distance for a man remaining with the seat, fragments of both visors were dispersed on the ground. In addition, paint chips from the helmet, mixed with brain tissue were located on the surface as well as the sub-surface. The pilot's watch was picked up in working order 8 feet from the impact area.

A second impact point was noted 15 feet down slope. Mixed in this area of loose shale, soft dirt and rocks of varying size were parts of the neck ring, seat kit and seat as well as brain tissue and fragments of skull bone. To the left of the path of the body created by sliding down the slope, the pilot chute kicker plate (See Photo #6) and teflon washers were located. The ball joint for the leg retractors was picked up slightly above the aforementioned area. In the second impact area, an imprint of suit material was noted by the investigators. The bush, located slightly to the left of the path of the body, had broken limbs indicating some object had crashed through and many pieces of tissue were suspended in the limbs of the bush.

The seat was located 10 feet below the second point of impact and to the right of the body track. It was found on its right side with the bottom of the seat wedged into the lower branches of a scrub tree (See Photo #9). The lap belt was found opened, with both halves draped over their respective sides of the seat (See Photo #10). Powder marks were observed on the leather protective pad, swivel link, latch housing and locking paw. The arming lanyard gold ring was found locked into the left half of the lap belt with the manual release lever in the closed and locked position. The swivel link was found latched to the manual release lever indicative of automatic lap belt function. The swivel link locking paw moved freely in the housing and was totally covered with black residue. The arming knob and arming cable were attached to the gold key and free of the parachute cable housing (See Photo #10).

Twenty-five feet below the second impact point and in line with the path of the body travel, the 40K survival kit was located still in the ripped out right suit leg pocket. Slightly below the kit, the second ball joint for the leg retractor was pin pointed.

The pilot continued down the slope for an additional 50 feet that could be traced by neck ring fragments, brain tissue, and scrapings and pieces of the survival kit. The pilot came to rest with the survival kit still attached and rolled up in parachute material that had spewed from the parachute pack (See Photo #7). The drogue chute was not deployed from its pack and had 1 pin bent 30 degrees while still in the locking cone. The back pack containing the emergency oxygen components and parachute arming mechanism was partially crushed but in relatively good condition. The oxygen supply was depleted. The pilot's helmet was found about 3 feet from the body and was severely damaged (See Photo #12).
The suit had relatively minor damage considering the rocky terrain that pilot bounced and rolled over.

The neck ring was fractured in numerous locations. The recently designed left emergency oxygen lead connector was missing. The controller outer surface had residual powder, (See Photo #14).

There was a severe linear laceration or rip through the suit and into the body along a line running from the left pelvic area and extending across the lower abdomen to the navel area, (See Photo #13). The right pocket was ripped out with the ASK kit. The left foot was badly scraped and the heel was partially ripped free. A cut through the leather with blood was evident.

Due to the lateness of the day and impending darkness, the body was removed from the chute and flown to Nellis Air Force Base after examination by Flight Surgeon, and two members of the Accident Investigation Board.

The investigating team arrived at the seat site the next morning. Investigation was partially hampered by previous traffic in the area and by the terrain with this severe slope. Removal of the seat and other equipment was accomplished that afternoon. All equipment was returned to homeplate for complete tear down and analysis.

A team of 5 personnel returned to the seat site 3 days later for a minute search for the missing emergency oxygen lead connector and locking clip. A detailed search of the area including sub-surface investigation at the impact areas revealed only small pieces of materials previously overlooked. The connector was not found.

EQUIPMENT TEAR DOWN

1. Ejection Seat System

 A. Ejection Actuation

 It was determined that ejection was accomplished by use of the primary (D-Ring) as indicated by the displacement of the D-Ring and the fact the T-Handle of the secondary system was not completely pulled to full travel. The T-Handle initiator was fired, however, this was determined to have occurred after impact. This was established by excessive burnt powder deposits dispersed on the seat back seat from the disconnected catapult plumbing. In addition, a leak in a plumbing line deposited burnt powder on some sheared off rivets after the seat impacted. The leak in the plumbing line appears to have resulted from a fracture on impact.

 B. Leg Thrusters

 The leg thrusters erected immediately after D-Ring pull and cables to spurs retracted. Leg thrusters were found in erected position and foot cables reeled in. Cable cutting was at the proper length, (Photo #9).

 C. Canopy Removal System

 There was no evidence of any malfunction of this system.

 D. Speed Sensor

 The speed sensor locked out the 1 second delay mode indicating that ejection occurred above 295 KIAS. The 1 second delay initiator did not fire after impact.
E. Cable Cutters

The cable cutters functioned by both the primary and secondary means. Gas passage was evident through both valves of cutters. Line was broken after impact.

F. 4.0 Second Delay Initiator

Fired normal - See statement

G. Initiator for Lap Belt Opening - Rotary Actuator

This final initiator fired normally providing gases for lap belt opening and actuation of the Rotary Actuator (man/seat separator). Reference statement "Instantaneous Gas-Fired Initiator".

H. Rotary Actuator (man/seat separator)

This unit fired normally taking up 13 inches of tape. There was a indication of heavy load on torque shaft edges. See statement, (Photo #9).

All initiators fired normally and as designed. Supported by statement.

2. Lap Belt

Residual powder pattern on lap belt hardware, suit, controller and gloves all are indicative of firing in the air with air flow normally encountered during ejection. (Photos #13, 14, 15). The latching pawl was free in travel at the time of tear down. Tear down revealed that the release piston had traveled completely up against the face of the access plug and had the shear screw implanted on the piston face, (Photo #16). The inside face of the access plug also had a imprint of the shear pin, the metal indicating heavy pressure force, (Photo #17). One "O" ring was missing from the piston shaft. Disintegration of this "O" ring is reported as common in belt firing, (Photo #15). The piston shaft shows marks of having opened under high lap belt tension. The carbon deposit on the piston was gouged clean with carbon imbedded in the metal at the pressure points between the lap belt latch pawl and the releasing piston shaft, (Photo #15). Brinell marks on the inside of the pawl latch housing and on the pawl indicated a possible jamming of the pawl thereby blocking release of the lap belt after belt had fired. These marks appeared to match the emergency oxygen safety clip. This clip was missing with the emergency oxygen lead connector. The lap belt webbing had holes gouged through the material that could be matched to sharp edges on the sides of the seat and appeared to have been caused during the progress of the seat down the hill (See Shear Pin test report).

3. Survival Kit

The survival kit was in relatively excellent condition considering the impact under taken. The yellow handle was broken off. Attaching hardware held the kit to the chute throughout. Seat cushion was partially ripped off and found at the site of the body. Lid was attached although jammed at all latching points. Many scratches and gouges were noted, caused by rocks and brush along the path of travel. The survival kit shows markings which can be related to the seat with the survival kit in a position extracted from the seat pan at the aft end and still engaged with the seat at the forward end in this position. The markings on the kit on the left side match two screw heads on the leg thrusters and fiber glass particles from the survival kit are impacted into the screw head slots. Also, with the kit in this position, the
the secondary T-Handle can be matched with markings on the forward right hand leg support on the kit. This force ripped the wood spacer in the forward support and broke off a piece that can show the impact point. With the kit suspended on a taut seat separator strap, and with the kit extracted in the rear and not in the front, a prominent depression in the seat back rest edge can be matched with a seat kit impact point indicating the seat kit relationship on impact. There is a severe gouge on the left side of the kit at the point of taper or narrowing of the kit that lines up with a screw on the shoulder harness locking lever. Since the seat is severely crushed to approximately half its original width, and none of this damage can be related to the seat kit, it appears that the seat kit was not in the seat pan at time of impact and was riding on the man/seat separator strap, (Photo #11). See Survival Equipment Functional Check.

4. Helmet and Suit

Inspection of the helmet revealed severe impact damage to the left rear side with the helmet regulator ripped free. All indications are that the helmet visor was in the closed position on impact.

Primary suit damage is at the left lower abdominal area. The exact cause of this damage could not be satisfactorily determined. See statement of (Photos #12, 13).
INVESTIGATION OF MAN-SEAT SEPARATION FAILURE

1. Numerous tests and investigations were conducted on the seat system and components to determine possible causes of malfunctions. These included:

 a. Lap Belt - Automatic Release Function.
 b. Rotary Actuator.
 c. Shoulder Harness.
 d. Survival Kit and Cushions.
 e. Seat - Lap Belt Release and Rotary Actuator.
 f. Initiators and Cartridge Devices.
 g. Personal Lead/Seat Entanglements.

2. Results:

 A. Lap Belt - Automatic Release Function:

 a. It was established that if tension were placed on the lap belt by over tightening the shoulder harness or from some other means that caused the lap belt to buckle or wedge, lap belt opening could be prevented until the applied force was momentarily released. This was further corroborated by test data and experience of personnel on hand at Norton AFB, AFIDI-M2. Canadian testing of F-104 seat produced similar hang-ups and was eliminated by a modification in the lap belt release mechanism. The markings on the release piston shaft and latch pawl indicated extreme tension at this point. These marks were not present on 4 simulated static test firings and could not be duplicated. Photo #16.

 b. Any object wedged into the latch pawl housing would cause lap belt release failure in that it would prevent the latch pawl release of the swivel link. The marks on the top of the pawl shoulder and the inside of pawl housing closely matched up to the emergency oxygen lead safety clip ends. This clip should not be released by the pilot in flight however. Questioning of Life Support technicians and aircrews revealed that they did not release these clips until after landing or in the chocks. An attempt was made to jam the lap belt by placing a clip into the housing. It was blown free by the flow of gas pressure at lap belt firing and failed to jam the release mechanism. The clip worn by the pilot could not be found at the impact site but this was expected in that it is attached to the emergency oxygen lead connector that has been broken off in the last 4 out of 5 bailouts.

 B. Rotary Actuator:

 a. High speed films of four firings of the lap belt and rotary actuator through the Instantaneous Gas Initiator confirmed that the lap belt fired first and was followed by the rotary actuator as designed.

 b. Manipulation of the rotary actuator straps with a live subject seated with full equipment revealed that initial motion imparted to the man and chute was straight up into the headrest sloped ramp and then forward. This was later observed in the static firings and accompanying high speed films. This upward motion would jam the drogue chute container into the shoulder harness hardware and then up into the wooden head rest extension. The severity of jamming would be dependant upon two factors. The first being the amount of travel of the chute. It appeared that the longer the distance, the more the rotary actuator
would force up the chute by winding up more strap. Secondly, the most severe jam of the chute came when the rotary actuator completed its stroke. If the rotary actuator stalled out or torqued off the shaft, then the chute would fall free with little effort. Insomuch as this test cannot simulate a zero "G" condition and the drag deceleration of the seat and man, these tests were not conclusive; but the hang-ups were accomplished.

C. Shoulder Harness:

a. The shoulder harness featured in all parachute hang-ups included during the static test firings. The shoulder harness adjusting buckles would wedge into the headrest extension block. In addition, the knot created at the shoulder harness insert point into the headrest area would catch on the drogue chute cover, over the butterfly spring. Photo #19.

b. Shoulder harness loops were noted to be distorted in a shape similar to the pav housing. Little effort was required on three in-service harnesses to move the loops over the housing. On lap belt separation, the loops could hang-up one half of the lap belt and require considerable effort to break the bond. A review of T.O. 13A1-1 and 13A1-1-511 indicates a measurement of the harness loop is required periodically. The loops should not fit over the pav housing. During static tests, 20 lbs drag on the shoulder harness would be sufficient to assure jamming of the chute into the headrest. 20 lbs of bind to remove loop from housing was easily achieved.

D. Survival Kit and Cushions:

a. During static tests varying results in chute jamming was achieved when changing cushions from the sleeping bag configuration to the A.D.P. cushion. The sleeping bag configuration would allow, through the use of the kit chute rest, the chute to slide over the kit and form a wedge angle as the back of the kit was raised to full lift. The A.D.P. cushion provided the most serious jam in that it permitted the rotary actuator to stroke fully, firmly binding chute into headrest. Photo #20.

b. The front of the survival kit jammed into the 8 bolts/nuts attaching the forward point of the rotary actuator straps. Reversal of these bolts and nuts permitted easier egress of the front portion of the kit over the lip of the seat pan.

E. Seat - Lap Belt Release and Rotary Actuator:

a. Historical review of previous ejections revealed that the only conditions not previously exercised were a planned ejection, with the man in a full upright ejection position with no abnormal forces, and the installation of the headrest extension which was not subjected to full testing prior to installation. The last of four static firings was configured without the extended headrest and proper ejection position to determine if the parachute could jam. Static firing produced a clean separation with the shoulder harness hardware thrown clear of the front of the headrest. The headrest ramp, even though struck by the drogue chute container, provided an unrestricted sliding surface.

b. A test subject with a complete suit was directed to open the lap belt manual release lever. He was not a crewmember. He had some difficulty in reaching the lever for a number of reasons. With the shoulder harness locked, he could not lean to see over the neck ring in order to see the latch. The folds of his suit partially covered the lap belt lever. The spring covering the arming lanyard lay adjacent to the lever and deflected his fingers which were encumbered by the pressure suit gloves.
F. Initiators and Cartridge Devices:

a. All devices were removed and opened for examination. All lines were air flow tested with no indication of obstructions. All devices were certified as having functioned and with no apparent loss of power output.

G. Personal Leads/Seat Entanglement:

a. The vent hose was thoroughly checked for possible hang-up points and in particular with the leg thruster. Ample clearance was provided and no apparent means of hang-up could be seen. There was no wind blast to determine the dynamic characteristics of the hose on ejection.

b. Oxygen leads, and communication leads were also evaluated in the same manner as above with the same results.

FINDINGS:

1. That all components of the ejection system functioned properly up to the point of man/seat separation and that the man was in the seat and separated at impact.

2. That the primary cause for the failure of the man to cleanly separate from the seat could not be absolutely determined.

3. That the most probable causes for the man not to separate from the seat were:

 A. Failure of the lap belt to release due to binding from excessive tension or side loads.

 B. Failure of the lap belt to release due to a foreign object obstruction in the paul latch housing.

 C. Headrest extension may have obstructed parachute travel during the separation phase.

 D. A combination of events involving two or more of the above.

 E. The pilot may have attempted to manually release lap belt and could not locate release lever as a result of the following possibilities:

 a. Could not locate release lever due to obstruction by clothing (outer suit).

 b. Could not see through fogged or iced up visor.

 c. Had interference from parachute arming lanyard spring in vicinity of lap belt lever.

 d. Could not reach lever due to spinning of the seat (after 4 second delay) causing arms to flail outboard.

 e. Rotary actuator forced body in jack knife position over lap belt when lap belt failed to release.

RECOMMENDATIONS:

1. That the headrest spacer be immediately removed from all aircraft.

2. That the shoulder harness attachment point be flattened out by reworking shoulder harness and attachment material.
3. That the lap belt automatic release mechanism be reworked to prevent tension or side load binding of the pawl latch lever.

4. That the shoulder harness loops be sewn to prevent slipping over the pawl latch lever housing.

5. That the underside surface of the headrest ramp and the top surface of the drogue parachute pack be provided a smooth interface.

6. That the eight nuts and bolts on the front of the seat securing the rotary actuator straps be reversed.

7. That the rotary actuator (man/seat separator) straps be repositioned to provide maximum forward thrust to the man/parachute mass.

8. That face plate emergency heater development be expedited to prevent visor fog or frost up on ejection.

9. That a readily accessible manual lap belt release lever be developed.

10. That a D-ring cable cutter be installed.

11. That the development of the protective cover for the oxygen controller assembly be expedited.

12. That a test be conducted to determine the effect of the 2 cushions now available on man/seat separation.

13. That all crew members and Life Support personnel be advised of the possibility of emergency oxygen lead safety clip interference with lap belt release mechanism.

14. That all future modifications to the ejection system receive thorough testing and qualification prior to issuance of TOTO kits or service bulletins.
The AQ-292 lap belt shear screw was examined and tested for proper material and functioning. The test results and material qualifications are as follows:

A. Screw failed at 171 pounds in double shear. Friction between plates is estimated at 5 to 10 pounds.

B. Prior to manufacture of screws the bar stock was identified and tested. Tensile specimens were obtained from each end of bar with the following results:

100 parts from Bar AQL 2 F_{tu} 64.6 KSI to 64.1 KSI
220 parts from Bar AQL 2 F_{tu} 64.6 KSI to 64.1 KSI
280 parts from Bar AQL 21 F_{tu} 65.9 KSI to 65.8 KSI

C. In addition, ten screws from each lot were tested in double shear with the following results.

100 parts made from AQL 2 and received 19 August 1963 reference P.O. 36349 Invoice No. 71669. The range in double shear is 142.0 to 162.4 pounds.

200 parts made from AQL 2 and received 14 February 1964 reference P.O. 43674 Invoice No. 79195. The range in double shear is 151.8 to 166.0 pounds.

280 parts made from AQL 21 and received 18 February 1965 reference P.O. 43624 Invoice No. 93354. The range in double shear is 155 to 173 pounds.

D. Conclusion -

The above test on the single AQ-292 shear screw is within acceptable tolerances.
TO: Investigation Board

FROM: [Redacted] (Approved Seat Mech.)

SUBJECT: LAP BELT RELEASE MECH. & ROTARY ACTUATOR (BLT SHAPER).

ROTARY ACTUATOR 125 - 555

<table>
<thead>
<tr>
<th>Test #</th>
<th>Drive Shaft</th>
<th>Take-Up on Harness</th>
<th>Piston Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Sheared</td>
<td>Approx 9"</td>
<td>Approx 2.2 inch</td>
</tr>
<tr>
<td>#2</td>
<td>Did Not Shear</td>
<td>Approx 14"</td>
<td>Approx 2.3 inch</td>
</tr>
<tr>
<td>#3</td>
<td>Sheared</td>
<td>Approx 9"</td>
<td>Approx 2.3 inch</td>
</tr>
<tr>
<td>#4</td>
<td>Did Not Shear</td>
<td>Approx 14"</td>
<td>Approx 2.3 inch</td>
</tr>
</tbody>
</table>

NOTE: A. Vertical lines of deposits inside of actuator indicated no added travel after burn out on all (4) tests. Article 125 actuator had approximately \(\frac{1}{4} \)" clean area at end of stroke past deposit build-up area.

NOTE: B. All units including Article 125 unit had unit internal gas pressure at time of opening of unit.

LAP BELT TESTS

A. All belts fired and released,

B. "O" Ring seal in all (4) test units blew out over one half of "O" Ring in line with gas entry into unit.

C. Plungers on all units had slight to moderate release marks.

D. Small light marks were made at time plunger was pushed out of case with small screwdriver.

E. Shear Pins — sheared in all units and were crushed against cap.

F. Belt release hooks showed light to moderate release marks.

G. Heavy sooting and overshadow on hooks could have been caused by continued flow of gas from ruptured "O" Ring.

H. Article 125 Lap Belt Release — Belt fired and shear pin was found against cap. Heavy release marks were found on hook assembly.

I. Test by hand of Lap Belt Release showed that only slight pressure was required to release hook on test unit. Hooks on all units were free to flop open or closed. Only when acute angle with heavy pressure did the lap belt fail to open.

Approved For Release 2001/08/29: CIA-RDP71B00590R0001001-4

Approved by [Redacted]

FOR OFFICIAL USE ONLY

(Special Handling Required. See AFR 1277.

25X1A

25X1A
SURVIVAL EQUIPMENT FUNCTIONAL CHECK

1. URT-21 Locator Beacon
 A. Transmits on telescopic antenna
 B. No transmission on flexible antenna

2. Life Raft
 A. CO2 actuator functioned
 B. Several holes in raft.

3. Ruck Sack
 A. CO2 inflator broken
 B. Numerous holes in rubber bag

4. Paddles
 A. Edges broken

5. Signal Mirror
 A. Smashed in sock acting as outer protection

6. Compass
 A. Lens cracked
 B. Body warped

7. Extra Battery - URC-4
 A. Badly broken

8. Life Raft Patch
 A. Broken wing nut

9. Morphine Syrette
 A. Broken - contents empty

10. Penlight
 A. Unuseable - crushed

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)
Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
11. Weapon
 A. Scope bent and displaced
 B. Shoulder stock bent
 C. Barrel plug with dirt

12. Ammunition
 A. Box crushed
 B. Numerous rounds unserviceable

13. Insect Repellant
 A. Plastic bottle squeezed, contents emptied

14. URC-4 Radio
 A. Totally unserviceable - smashed

15. Candles
 A. Crushed
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0630</td>
<td>Return</td>
<td>25X1A</td>
<td>Local</td>
</tr>
<tr>
<td>0645</td>
<td>Prof & Test</td>
<td>25X1A</td>
<td>Local</td>
</tr>
<tr>
<td>0900</td>
<td>F.G. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1130</td>
<td>F.G. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1345</td>
<td>F.D. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>Transition</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>Training</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1515</td>
<td>Feet</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>F.G. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>F.A. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1645</td>
<td>Prof & Test</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1730</td>
<td>Prof & Test</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>XC Guard & RUN</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td>F.G. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td>F.D. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>Transition</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>2115</td>
<td>Feet</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>2230</td>
<td>F.G. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
<tr>
<td>2230</td>
<td>F.A. Chase</td>
<td>25X1A</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Local: Local training
- 25X1A: 25X1A Base
- F.G.: Fixed Gear
- F.D.: Free Dropping
STATEMENT

Date: 2 January 1967

Duty Phone: 3212

Grade:

Organization or Address:

AFSC or Job Title: Staff Weather Officer

Accident - A-12, #125, 5 Jan 67

I have been advised in accordance with the provision of AFR 127-4, that the
purpose of this investigation is to determine all facts relating to the above
accident, and in the interest of accident prevention to preclude recurrence.
I understand that it is not to obtain evidence for use in disciplinary action,
or for determining pecuniary liability or line-of-duty status, or to revoke
commission or remove from the active list under the provisions of AFR 36-2 or
for use before a flying evaluation board.

Age: 42

Assigned Duty: Staff Weather Officer

Flying Experience: 6413:35

The weather briefing was given by and is included in the official tape transcript.

Previous refueling and weather scout reports indicated the AAR was clear.
This was discussed with prior to the formal briefing.

 was contacted by while being suited and was given the
latest runway condition at Hill, AFB (TR6) and Fallon NAS (LSR BRG).

At approximately 1245 PST the command post was notified of our amended
wind warning for surface gusts to 45 knots from 300 degrees. (See attachment 1)

A NE-SW oriented cold front was moving SE through the accident site at
an average speed of 21 knots at the time of the accident. Hourly positions
of this front are indicated in attachments 2 thru 7. Surface winds in
advance of the front were averaging SW at 25 knots. Surface winds behind
the front averaged NW at 30 knots with gusts to 45 knots.

The weather conditions at the time of the accident are indicated in
attachment 10.

Temperatures and winds for the cruise portion of the flight profile
are shown in attachment 8.

The winds which have been analyzed to effect the flight profile of the
aircraft from 80,000 feet to impact are listed in attachment 9.

Locally available upper air sounding (RAGE) data from indicates that contrail formation was probable from 32,500 feet to 41,000
feet in the vicinity of the crash. Contrarily, data from indicated that contrails should be nil at all altitudes. All available
data has been forwarded through Air Weather Service channels for detailed
evaluation by the best experts available. A tentative suspension of 12 Jan
67 has been provided for a reply. Additionally; the recovery chase pilot
for Dutch 23, which landed at 2203Z from the North, indicated no contrails
were observed; and the chase pilot for Dutch 45's 2nd AR reported no
contrails on descent to the tanker. This flight profile was 100 nautical
miles north of the crash site and occurred two hours before the time
of the accident.
ADDITION TO ORIGINAL WEATHER STATEMENT DATED 9 JAN 67 TO ACCIDENT BOARD

27 Jan 1967

A subjective and computer analyses performed at Global Weather Central, Offutt AFB, Nebraska, indicated the probability of contrail formation from 34,000 feet to 54,700 feet in the area of the accident.

Staff Weather Officer

SECRET

FOR OFFICIAL USE ONLY

(Special Handling Required - See AFR 127-9)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
SOMEBEH WEATHER WARNING LOG
ISSUED BY DETACHMENT 1, J3D
WEATHER HUB 0/L 3

<table>
<thead>
<tr>
<th>AREA EFFECTED:</th>
<th>VALID/TIME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>25X1A</td>
<td>5/1330 TO 2400p</td>
</tr>
</tbody>
</table>

DATE: 5 JAN 67

AREA EFFECTED:

1. **SURFACE WINDS SOUTHWESTLY (240°) AT 15 KTS, GUSTING TO 25, OCNL GUSTS TO 35 KTS UNTIL 1500L. WINDS SHIFTING TO NORTHEASTERLY AT THAT TIME AT TWENTY KTS, GUSTING TO 35 KTS, OCNL GUSTS TO 35 KTS.**
2. **CROSSWINDX COMPONENT 30 KTS UNTIL 1500L.**

VALID/TIME:

<table>
<thead>
<tr>
<th>AREA EFFECTED:</th>
<th>VALID/TIME:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATTACH NO.

FORECASTER: 25X1A

TIME CALLED/DELIVERED TO CP: 1330

RECEIVED BY (CP):

SECRET

FOR OFFICIAL USE ONLY

OPERATIONS AND WITNESS GROUP

Investigation of major accident involving A-12 Aircraft S/N 125 which occurred at [redacted] on 5 January 1967

A. HISTORY OF FLIGHT:

On 5 January 1967, [redacted] was scheduled to fly Article Number 130 on a routine training flight with a 1000 local takeoff. At the 0750 operations briefing Article 130 was cancelled for maintenance. [redacted] DCOT, substituted [redacted] for [redacted] sortie scheduled for a 1200 takeoff in Article 125. The mission included two air refuelings and two cruise performance legs. Mission planning was accomplished by the mission planning staff. Two F-101 aircraft were scheduled as chase aircraft for applicable portions of the mission.

The formal briefing for the pilot and chase pilot was conducted at 1030 by the operations staff. Prior to 1030, [redacted] had conducted informal briefings with [redacted] on mission requirements. [redacted] suited on schedule after which he was driven to the aircraft.

The aircraft had been pre-flighted by the maintenance ground crew in accordance with existing procedures. The Interior Pre-Flight, Starting Engines and Before Taxiing checks were accomplished without discrepancy.

The aircraft was taxied to the runway and cleared for takeoff. Takeoff was 1159 local. The first refueling was scheduled in Yuletide Special Operating Area with a 20152 ARCT and a 51,000 pound on load. Initial contact was established at 2018Z and air refueling completed at 2035Z 10NM beyond end refueling point with an actual transfer of 30,000 pounds. In Dutch 45 stated that was all the fuel he could take. During the climb, [redacted] reported moderate turbulence from 48,000 to 52,000 feet and that a circuit breaker popped which would not reset, disengaging the auto pilot. [redacted] reported that due to the turbulence he was changing his climb schedule.

Dutch 45 made a report 657NM DTG to position six. This is ten miles past his planned level off point at which he should have been at 75,800 feet with 42,000 pounds. He reported at 66,000 feet with 45,000 pounds fuel.

At first cruise "how goes it" check point, (1:06 flight time) [redacted] reported 36,700 pounds, actual fuel against 36,100 pounds programmed. The entire leg was above fuel program running from 500 pounds at first check point to 1100 pounds at position eight. There was no deviations plotted from the planned track.

At the start descent point of 260NM DTG (distance to go) from the second ARCP in the Yuletide Area, [redacted] was 1100 pounds above the planned fuel and four minutes late. (1:47 flight time) at level off altitude of 29,000 feet, 52NM DTG, fuel remaining was 14,000 pounds. Twenty-two miles later, [redacted] reported he was below Bingo fuel. This meant fuel remaining is below 11,500 pounds. He lost an additional two minutes due to the 52 mile level off instead of the scheduled 20 mile bottom out point. After UHF contact with his tanker, Cute 57, [redacted] stated "I want my fuel right now." Refueling was completed with four disconnects and a climbing flight path from 30 to 33 thousand feet for the last six minutes of refueling. The tanker pilot stated the refueling was average or better. At end of refueling, Dutch 45 was advised his position was over Current VOR (2:35 flight time) and on load was 61,000 pounds, 1000 pounds over briefed. [redacted] stated he needed another 4 to 5 thousand pounds. He was advised by the tanker pilot they had refueled the chase plane with 4,000 pounds prior to [redacted] refueling and there was no more fuel available.
contacted Bungalow and advised he was around 4000 pounds short and would have to cut short his turning point on the second cruise control leg. He requested this information be passed to all agencies.

Dutch 45 gave a report at planned level off where he should have been at an altitude 75,800 feet with 42,400 pounds of fuel. He gave his altitude as 71,800 feet with 40,300 pounds of fuel. This is 2100 pounds below the fuel curve. Twenty seven miles later he reported his level off altitude as 74,000 feet with 39,800 pounds of fuel remaining. Since he was still climbing, he would be approximately 2300 pounds below the curve.

After this point there are two more entries on Dicted that mention fuel, however, they do not include a location or DTG from a fix. The tape had been severely damaged in the wreckage and only small pieces of the last portion have been recovered. There is insufficient information to plot actual fuel consumption for the second cruise control leg.

The FAA Center and the Signal Conditioner and Data Monitor (SC&DM) printout, both plot out very well together and show the route flown very close to “as briefed” with the pilot electing to fly the complete mission. Verification of the times show the actual flight continued to run four to six minutes late during the entire second cruise leg.

At 2320Z (3:21 flight time) the Two minutes later on his first HF voice transmission reported he was just rolling out of the far east turn and running 800 to 1000 pounds short on fuel which he expected to make up. His planned fuel at this point was 25,500 pounds. This would give him an actual of 22,300 pounds.

The last fuel check point is Position 16, Cimarron, N.M., 13,800 pounds of fuel is required if he is to continue to home plate. If he has less than 13,800 pounds he was briefed to land at Albuquerque. The flight plan time to this point is 3:36. passed Position 16 at 3:42 flight time proceeding towards home plate. At 23:45Z, 3:46 flight time, reports he is abeam Farmington with 7500 pounds of fuel and he cannot explain the excessive loss of fuel but thinks he can make home plate okay. Normal fuel consumption would have put him abeam Farmington with 11,800 pounds of fuel.

At approximately 305NM from the Base, 3:49 flight time, the SC&DM shows a reduction of speed. At 260NM, 3:51 flight time, the SC&DM indicates leaving altitude 74,100 feet with a continuous descent. At 23:52Z reports on HF that he is 200NM out with 4600 pounds of fuel remaining. At 23:56Z he reports 130NM out with 4000 pounds. At 23:56:49Z he reports 120NM with 3900 pounds and he should be able to make to home plate. At 0000:26Z he reported 85NM and 2700 pounds. At 0001:56Z he reported, “I’m going to have to jump out of this thing at 22 (two interrupt transmission) - flaming out.” The low fuel started at that time and continued till 0002:24Z at which time total power was lost or aircraft impacted with the ground. Total flight time was estimated at 4 hours 3 minutes. flying recovery chase, observed the aircraft nose over, enter a steep dive and disappear into the undercast. He was an estimated two miles distance from and did not observe the ejection. At time of impact the aircraft was estimated to be in a 69 degree dive angle, wings near level. The scatter pattern of wreckage was on an average heading of 240 degrees magnetic. Captain Sharp witnessed the crash while flying in an F-105 at approximately eight thousand feet at an estimated five miles Northeast of the impact point. Due to twilight in addition to a frontal passage the wreckage was not located till 2302Z on the 26,000V, 45°N, 110°W and 114 degrees 30'W.
B. INVESTIGATION AND ANALYSIS:

1. There were three possibilities considered by the operations group in determining the cause of this accident.

a. Since the pilot reported that he was four or five thousand pounds short of fuel after completion of the second refueling the first possibility considered was that he remained short of planned fuel reserves around the entire course. Analysis of statements, recorded radio transmissions and the pilot's dictact recorder tape refutes this. First, he was briefed to turn to the return leg with 28,300 pounds of fuel remaining if this fuel condition occurred before the programmed turn point. He did in fact advise Bungalow after refueling that he would probably have to turn short. Further, the cockpit tape recorder and HF radio transmissions show that indicated fuel quantity remaining over check points was essentially as programmed by the time he completed the turn. He recorded a gain of 2000 pounds over programmed at level off and was cruising at a minimum afterburner, constant Mach cruise which on previous experiments has increased performance. Therefore, it is entirely possible that indicated fuel quantity remaining was 28,300 at the turn and the possibility that he knowingly disregarding fuel minimums cannot be substantiated by data recorded.

b. The second possibility was a rapid fuel leak which occurred after passing the fuel decision point at position 16 which governs whether he should land at Albuquerque or has the required minimum fuel of 13,800 pounds to continue to home plate. Due to the complete destruction of the Article upon impact, it was impossible to reconstruct the fuel system and components. A failure could have occurred prior to where 7500 25X1A called 7500 pounds fuel remaining at that point where he normally would have 11,800. There is no concrete evidence that he did not lose fuel, but the fuel consumption rate after he called 7500 is near normal. He told the Command Post on HF voice that he was losing fuel and didn't know where 25X1A called. An over-the-shoulder periscope is provided the pilot so he can scan the top and back of the aircraft. Since this is a frequently used item to check on fuel dump, rudder alignment, etc, it is assumed he would have used the periscope to trouble shoot the fuel system if a leak was suspected. It is a possibility that a tank containing approximately 3 to 5 thousand pounds ruptured but this would only explain the sudden fuel loss around 14,000 pounds remaining on the second leg. The similar loss on the first leg could not have occurred from a high leak rate otherwise it would have been evident to the chase pilot or tanker crew during refueling.

c. The third and most probable cause of this accident is a gage error reading approximately 3000 pounds high when there is above 14,000 pounds of fuel aboard the aircraft. This is substantiated by the descent to the second refueling where he had reported 14,000 pounds of fuel and that 22 miles later he called below bingo (11,500 pounds). Also he must have been indicating near his minimum fuel (13,800) to pass his decision point to turn to Albuquerque. Approximately four minutes later, he reported 7500 pounds where he should have had 11,800 pounds. He started his descent at 305 NM from the base into strong headwinds averaging 100 knots. There are some indications that fuel used during the descent was slightly higher than normal, but the excess fuel was not of the high magnitude previously experienced and can be partially explained by a brief decrease in rate of descent.
Dictect tape.

These studies confirmed the finding of the investigation team and the units mission planning team that there was no abnormal fuel usage except for the two times in flight when the fuel total reaches 14,000 pounds then decreases rapidly to around 11,000 pounds. On the last two HP voice contacts he reports at 1601:34, "Roger, the vis - ah - OK, I just got a fuel low pressure light on everything". Twenty-two seconds later he reports, "Roger, I'm going to have to jump out of this thing at 22 - flaming out". His voice was interrupted by the totalizer was transmitting the totalizer fuel gage reading of 2200 pounds just prior to flame out. This 2200 pounds indicates that the engines flamed out before the quantity gage reached zero. A previous fuel gage calibration indicated a 650 pound error on the high side with this quantity remaining.

C. ANALYSIS OF WITNESS STATEMENTS:

a. There were two witnesses who observed the final stage after flame out of Article 125. Both witnesses were commissioned pilots in the U.S. Air Force. However, their reports contained no significant information relative to the cause of fuel starvation which caused the accident. These two statements are included under Tab N.

D. FINDINGS:

1. The pilot was on an authorized flight and adequately briefed.

2. The pilot was a qualified instructor pilot, current and proficient in the aircraft.

3. Even though the descent from altitude was through a band of strong headwinds, weather is not considered to be a factor in the accident.

4. The Dictect tape has no provisions for separating remarks that might have been made minutes apart.

5. The Control tower time hack was found to be three minutes in error.

6. The time recorded on the SC&DM print out was found to be in error five minutes.

7. The pilot reported 7500 pounds of fuel remaining 388 NM from the base when 7500 is the fuel reserved required over the base. At this point a landing should have been made at Albuquerque.

8. The pilot initiated descent under known low fuel conditions into a strong head wind earlier than planned.

9. Refueling procedures should be revised. During the second refueling the chase airplane refueled ahead of and took 4000 pounds of fuel which if available for would have probably enabled the Article to return to home base.
E. RECOMMENDATIONS:

1. The Dictet be redesigned to allow a break between each conversation

2. The WWV time hack be transmitted simultaneously to all using agencies.

3. Fuel reserve points should be positively identified as a "Go no Go" point in order to arrive over the alternate with the briefed fuel reserve.

4. Local procedures be published for training refueling missions that:
 a. The tanker will have required and scheduled fuel aboard plus 10,000 pounds, conditions permitting.
 b. Chase missions are scheduled so that no possibility of interference with refueling of the primary receiver occurs.
MATERIAL FACTORS GROUP REPORT

INVESTIGATION AND ANALYSIS

Investigation of major accident involving Article #125, 5 January 1967 indicated the aircraft impacted on the down slope of a 45 degree hill in a near wings level, upright position in a 69 degree nose down attitude. The wreckage was strewn over an area approximately two miles long on a magnetic heading of approximately 240 degrees near Leith, Nevada. The aircraft was intact and structurally airworthy prior to impact.

Examination and analysis of the aircraft and components revealed the following pertinent items:

1. The canopy had been ejected.
2. The seat had been ejected.
3. The engines flamed out simultaneously.
4. The aircraft completely disintegrated on ground impact. The Dicted tape was partially destroyed on impact with the ground.
5. The Signal Conditioner and Data Monitor (SCDM) tape was partially destroyed on impact with the ground.
6. The over the shoulder cameras were missing from the canopy.
7. A lower wing fillet came off prior to ground impact.
8. There was no in-flight fire or explosion.
9. There were six small local area fires subsequent to ground impact.
10. Due to complete desintegration of the aircraft and components on impact, engine, hydraulic oil, fuel, flight control, electric, electronics, and structural integrity could not be specifically determined.
11. Examination of the wreckage and instrumentation data did indicate that:
 a. The aircraft did not have a structural, engine, flight control or electric/electronic failure prior to flameout and/or impact.
 b. The engines did flame out and AC power was lost at 0067 nautical miles from destination.
 c. The over shoulder camera did separate from the canopy on canopy release.

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-41)

Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
d. Readability of the SCDM, Dictet, and Flight Recorder tapes was difficult because of partial disintegration. (See Tab V).

e. The possibility of an erroneous fuel indication have existed.

f. The possibility of a fuel leak have existed.

g. The possibility of actual fuel exhaustion existed.

The Dictet, SCDM and Flight Recorder tapes verified many of the above items. Fuel leak tests were conducted and indicated that under certain conditions the possibility existed whereby fuel could have been lost causing fuel exhaustion. Fuel reading tests were conducted and indicated that under certain conditions the possibility existed whereby fuel reading could read higher than the actual on board quantity. These tests were conducted by ADP personnel in conjunction with the accident board and specific results are contained in the Fuel Section of this report.

C. Findings:

1. The aircraft was structurally airworthy prior to impact.

2. There was no fire or explosion in flight.

3. Excessive time and effort was expended in locating the canopy.

4. Both over-shoulder cameras separated from the canopy when the canopy was jettisoned.

5. A large part of the recovered "Dictet" tape was unusable.

6. Variable frequency AC power was available up to the time of engine flameout.

7. After engine flameout, the batteries provided DC power up to the time the last transmission was made on UHF. DC power was most probably available until the airplane impacted.

8. There was no evidence to indicate a failure of the regulated AC power system (inverters).

9. Engine flameout occurred at a point 67 nautical miles from the home base at a ground speed of 383 knots.

10. The location of the Dicted recorder was conducive to major damage of the tape.

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)
11. The existence of a gauging error causing the quantity indicator to read high until approximately 14,000 pounds of fuel remaining is considered possible.

12. A requirement exists for a more positive method of determining fuel quantity aboard the aircraft during ground fueling of the aircraft.

13. Fuel quantity calibration procedures are not ideal in that the calibration is not made in the sequence the fuel is used.

14. Changing of a fuel probe could change system calibration significantly.

15. The probability of a fuel leak causing a loss of fuel is considered remote.

D. Recommendations:

1. That action be initiated to establish a method of identifying and locating the canopy after inflight ejection.

2. That action be initiated to modify the attachments for the over-shoulder cameras to prevent them from separating from the canopy at the time of ejection and/or ground impact.

3. That action be initiated to install the "Dictet" on the canopy in such a manner as to withstand canopy jettison forces and/or ground impact.

4. Consider the replacement of Dictet recorders with a better designed device which has standard tape speeds and better fidelity.

5. Explore the possibilities of modularizing the tape cassette portion of the Signal Conditioner and Data Monitoring equipment with the objective of making it crash and fire proof to further insure recovery of undamaged tape.

6. Establish a requirement to defuel aircraft after flight, comparing the fuel indicator quantity and off loaded quantity. A differential limit should be established.

7. On all ground fuelings the aircraft should be filled from a zero-fuel condition and then fuel off loaded to desired fuel quantity. Tolerances must be established for difference in indicator and tanker readings, both at the full and off load points.

8. Fuel tank dip stick capability should be provided.
9. A requirement for fuel system calibration should be established when any major component in the fuel system, such as a probe, is changed.

10. Fuel system quantity calibration procedures should be changed to conduct the calibration in the sequence the fuel is used from the tanks.

RAI C. GORDON JR. Lt Col, USAF
Directorate of Aerospace Safety

SECRET
FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)
MAINTENANCE GROUP REPORT

1. Maintenance forms and records for Article 125 were reviewed to determine if any outstanding discrepancies existed which could have contributed to the accident and to determine if any reoccurring discrepancies relating to aircraft performance, aircraft fuel system, and engine performance existed.

A list of discrepancies for flight 193, 19 Oct 66, thru flight 205, 30 Dec 66, relative to aircraft performance, aircraft fuel system and engines is included as an attachment to this report. Also a summary of maintenance and modification activity starting with the week ending 27 Oct 66 and ending 5 Jan 67 is attached.

One recurring discrepancy involved the right inlet aft bypass door circuit breaker. This discrepancy existed through flight 202 but was not reported on flight 203 and was not mentioned by the pilot on the accident flight as a problem.

A second recurring discrepancy was a right wing heavy condition reported on flight 200. This condition required a 1 1/2 degree left roll trim. Corrective action was a check of rigging with contour boards. Rigging was satisfactory. The condition existed again on flight 201.

A discrepancy which could be related to a loss of fuel was written upon 9 Dec 66 following flight 201. The right fuel flow was approximately 5-7000 pounds higher than the left on subsonic descent and also on landing. Corrective action consisted of a ground check on the trim pad which was satisfactory. A note was made in the flight test engineers log requesting a flight check. Two flights were made subsequent to 201 and prior to the accident flight without any similar writeup.

A discrepancy which could have related to a subsequent gauging error was noted during the week ending 17 Nov 66. This discrepancy involved a 6000 pound difference between indicated totalizer and indicated sum of the individual tanks. After trouble-shooting, the indication system control unit was judged to be unstable and it was replaced. A subsequent fueling check was satisfactory. During the next fueling, the same discrepancy was again observed. This time the problem was traced to a bad probe in tank #3.

All outstanding Service Bulletins and Shop Authorized Modifications were reviewed to determine if their compliance had any bearing on the accident. Five outstanding service bulletins involved the fuel system. There was no evidence to indicate that non compliance with these bulletins had any bearing on the accident.

2. All maintenance records and forms were properly maintained and no discrepancies were noted.

FINDINGS: There was no evidence that maintenance practices were a cause factor in this accident.

ARTHUR G. SMITH
Propulsion Engineer
DIG/IS

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required, See AFR 127.4)
Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
FLIGHT SQUAWKS AND CORRECTIVE ACTION FROM FLIGHT 193, 19 OCT 66 THRU 203, 30 DEC 66, RELATIVE TO FUEL SYSTEM, LIFE SUPPORT SYSTEMS, AND AIRPLANE PERFORMANCE

25X1A

Flight 193 - [redacted] - 19 Oct 66

1. Right aft bypass circuit breaker popped in flight: Ground checked system OK.
2. Engine failure and precautionary landing at Kirtland: Malfunctioning Tt2 sensor; replaced engine.

Flight 194 - [redacted] - 22 Oct 66

1. Normal and emergency fuel dump inoperative: Found and replaced broken wire.
2. Right fuel low pressure light in pattern with tanks 4 and 5 feeding: Ground checked system OK.

Flight 195 - [redacted] - 1 Nov 66

1. A/B's cannot be retarded to min A/B stop without going out: Rerigged throttle linkage.

Flight 196 - [redacted] - 3 Nov 66

None pertinent

Flight 197 - [redacted] - 18 Nov 66

1. Unable to transfer forward to tank #1: Replaced forward transfer selector switch.
2. Fuel dump came on and off occasionally when fuel dump was attempted in normal position: No corrective action since it was assumed fuel level in #4 tank was at 4000 lb level.

Flight 198 - [redacted] - 22 Nov 66

1. R/H engine runs out of trim below 350 KEAS at 3.12 MN. EGT at this point is 790°: Within limits; no action.
2. Aft bypass door circuit breaker pops during descent. Won't reset during descent. OK when subsonic and during climb: Changed wiring for L/H door control. Installed test circuit breaker to isolate L/H system from R/H.
Flight 199 - [redacted] - 1 Dec 66
1. Left throttle becomes very stiff once aircraft is accelerated to cruise: Lubed L/H throttle linkage and engine pulleys which were found to be dry.
2. Tank #1 made 500 lbs on both descents: Replaced jet pump in fuel tank #2.

Flight 200 - [redacted] - 7 Dec 66
1. Right wing heavy during cruise. Requires 1 1/2° left roll trim: Checked rig with contour boards OK.

Flight 201 - [redacted] - 9 Dec 66
1. Had to use EBL (emergency boom latch) on both tankers: Readjusted contact mode switch.
2. Ran out of trim on R/H engine at cruise: Raised EGT trimmer stop 38°C.
3. Still have right wing heavy condition.
4. R/H fuel flow approximately 5-7000 lbs higher than left on subsonic descent same on landing: Ground check was OK.

Flight 202 - [redacted] - 14 Dec 66
1. Aft bypass circuit breaker pops during deceleration: Replaced selector switch and door override relay.

Flight 203 - [redacted] - 30 Dec 66
None pertinent
MAINTENANCE AND MODIFICATION ACTIVITY RELATIVE TO FUEL SYSTEM
AND AIRPLANE PERFORMANCE FROM AFTER FLIGHT 193 THROUGH 5 JAN 67.

Week Ending 27 Oct 66

1. Both engines replaced for Tt₂ sensor change.
2. Completed Shop Action Memo No. 159, Fire Can Abrasion, Fuel
Scavenge Line.

Week Ending 3 Nov 66

None Pertinent

Week Ending 10 Nov 66

1. checked all wiring in aft bypass system. Replaced left
and right switch boxes and actuators.
2. Opened fuel tanks for inspection for brown gummy deposit.
3. Washed brown deposit from all fueling pilot valves and 1/4" sense
lines. Also checked operation of all float switches.

Week Ending 17 Nov 66

1. During fueling, a 6000 lb discrepancy between indicated totalizer
and indicated sum (of individual tanks) was noted. After troubleshooting,
the indication system control unit was judged to be unstable and it was
replaced. A subsequent fueling check was satisfactory. During the next
fueling, the same discrepancy was again observed shortly after the fueling
operation was initiated. This time the problem was traced to a bad probe
in tank #3. The probe was replaced and subsequent operation was satis-
factory.

18 Nov through 1 Dec 66

Reset zeroes on fuel quantity system.

Week Ending 8 Dec 66

None Pertinent

Week Ending 15 Dec 66

None Pertinent
Week Ending 15 Dec 66

1. Replaced L/H forward bypass actuator
2. Replaced R/H AIC hot box.
3. Repaired tank sealant in tanks 3 and 4.
4. Completed Service Bulletins:
 1006 - IFR Interphone
 1061 - Relocate Fuel Shutoff Valves

22 Dec 66 through 5 Jan 67

1. Made check on full fuel calibration.
2. Completed Phase I Inspection.
STRUCTURAL, FIRE AND EXPLOSION GROUP

Investigation of major accident involving A-12, Article #125, 5
January 1967.

A. Aircraft Impact: Examination of the impact marks on the ground
and the wreckage indicated the aircraft impacted on the down slope side of
a 45 degree hill in a near wings level, upright position in a 69 degrees
nose down attitude. The scatter pattern of wreckage was on an average
heading of 240 degrees magnetic. Upon impact, the aircraft disintegrated
with almost complete absence of fire. Five or six small fires resulted
from TEB and hot metal particles. The scatter pattern along the flight
path from the point of impact is shown in Wreckage Diagram (Tab Y). The
wreckage was removed to home base and placed on a plan form diagram (Photo
Nr. 5).

B. Investigation and Analysis:

1. Examination of the wreckage revealed complete disintegration
upon impact. The largest piece was a portion of the vertical stabilizer,
approximately 4′x5′. All identifiable components were examined. Examin-
ation revealed the aircraft was intact immediately prior to impact with the
exception of a lower wing fillet and the canopy and seat. Witness to the
accident did see what appeared to be contrails; however, no inflight fire
was observed by the witnesses. There were six small local area fires sub-
sequent to impact resulting from the TEB and hot metal fragments impinging
upon dried brush. Other burned structural parts found in the impact area
were examined to determine whether or not the burning took place prior to
impact. All burning was indicative of post impact fire.

2. One of the lower wing fillets was found approximately four
miles back along the flight from the point of impact indicating the aircraft
speed was in excess of 450 KIAS. The modification of this part is speci-
fied in Service Bulletin #890 (Lower Fillets). This S.B. had not been
completed prior to the accident flight, but is not considered applicable to
this accident. Particular emphasis was placed on assembly of all recovered
fuel system components, cockpit components and other suspect areas; however,
examination revealed no malfunctions within any of these systems.

3. All three landing gear parts, engine parts and other heavy
components were downstream from the impact point. This indicates the air-
craft, although contacting the ground in an upright position, then disinte-
grating, did so in a skipping motion causing the majority of the pieces to
continue along the flight path for a considerable distance.

4. When the pilot initiated the ejection sequence, the canopy
separated from the aircraft in a normal manner and impacted in an inverted
position at approximately 45 degrees. The canopy was not located until
the fifth day after the accident. It became necessary to use ground search
parties on foot to find the canopy because it could not be sighted from
helicopters. Both over-the-shoulder cameras were missing from the canopy.
Investigation indicated that the left camera and attachment bracket came
off in a downward and slightly rearward direction. The right camera,
camera bracket and a 23 1/4 inch by 6 inch piece of fiberglass canopy sill
came off in a downward and rearward direction. Both cameras came off when
the canopy was ejected.
5. The "Dictet" tape although recovered in the main wreckage area was badly damaged and torn during impact. Intensive search recovered many small pieces of the tape. These pieces were matched together and some data was derived; however, many of the important items of information were lost due to the poor condition of the tape.

C. Findings:

1. The aircraft was structurally airworthy prior to impact.
2. There was no fire or explosion in flight.
3. Excessive time and effort was expended in locating the canopy.
4. Both over-shoulder cameras separated from the canopy when the canopy was ejected.
5. A majority of the recovered "Dictet" tape was unusable due to its poor condition.

D. Recommendation:

1. That action be initiated to establish a method of identifying and locating the canopy after inflight ejection.
2. That action be initiated to modify the attachments for the over-shoulder cameras to prevent them from separating from the canopy at the time of ejection and/or ground impact.
3. That action be initiated to install the "Dictet" on the canopy in such a manner as to withstand canopy ejection forces and/or ground impact.

[Signature]

C. GORDON, JR, Lt Col, USAF
Directorate of Aerospace Safety

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required, See AFR 127-4)
Approved For Release 2001/08/29 : CIA-RDP71B00590R000100010001-4
PROPELLER FUEL AND OIL SYSTEM GROUP REPORT

I. Engines:

a. YJ440 Engines SN's \(P64209 \) and \(P64203 \) were installed in the left and right nacelles respectively at the time of the accident. The engines were installed on the 28th and 29th of October 1966, prior to flight 195. The only significant engine write-up from flight 195 until the accident flight was a write-up for high fuel flow on the right engine during subsonic descent. This discrepancy occurred during the flight 201 on 9 Dec 66. No corrective action was taken since a ground check was satisfactory; however, a check on the next flight was requested. No further write-ups on this discrepancy occurred after flight 202 on 14 Dec 66 and flight 203 on 30 Dec 66. However, no positive statement was made subsequent to either flight that fuel flows were satisfactory during subsonic descent. No mention of unequal fuel flows was made by the pilot of the accident flight on either the communications tapes or the recovered portions of the "Dictor" tape.

b. Examination of the wreckage at the crash site revealed that both engines impacted with the aircraft. Due to the extreme disintegration of both engines it was impossible to determine the condition of either engine prior to the impact. The pilot's statement on the communication tapes indicate that both engines flamed out at the same time as a result of low fuel pressure.

c. Past engine problems involving loss of fuel due to engine fuel system plumbing failure were considered. The only significant finding was an occurrence during flight 81 of Article SN 129 on 31 Dec 1966. Review of pertinent data from this flight showed an instantaneous increase in fuel flow of 18,000 pounds per hour, a drop in exhaust gas temp of 150\(^\circ\)C and an increase in engine speed of 350 RPM. With these indications of malfunction available to the pilot it is believed that had it occurred on the accident flight he would have recognized the offending engine and taken appropriate corrective action.

II. Fuel System:

a. The aircraft and engine fuel systems were totally destroyed by impact. The only recognizable components recovered were pieces of fuel boost pumps and some severely mutilated fuel lines with flange fittings.

Due to the total destruction it was not possible to determine the integrity of the fuel system prior to aircraft impact. Therefore the investigation was concentrated on malfunction analysis of the fuel system to determine possible sources of fuel leakage and gauging errors which could explain both apparent losses of fuel; (1) on descent to the second aerial refueling, and (2) after passing position 16.

It was noted that both fuel losses occurred after the total fuel indicated quantity was at approximately 14,000 pounds of fuel remaining. There were no other similarities. For example, the first loss occurred on descent near 29,000 feet altitude with engines at 680 RPM, whereas the second loss occurred during cruise at and approximately 74,000 feet altitude. Therefore, the malfunction seems to be related to the quantity of fuel remaining rather than any other parameter.

b. In considering fuel leakage as a possible cause of fuel loss, the total fuel system was reviewed and potential leaks were divided into two categories: (1) those leaks which would show up on the fuel flow indicators, and (2) those that would not. The rationale here is that the pilot would have observed an unequal fuel flow indication; therefore, those potential leaks which fell in category (1) are considered least likely.
It is possible to match leakage rates with the fuel reported lost by the pilot. For example, during that portion of the flight from position 16 to the reported 7500 pounds of fuel remaining, 4000 pounds of fuel is apparently lost in 4 minutes for a rate of 1000 pounds per minute (60,000 pounds per hour). This could be caused by several leaks which show at least this rate of leakage. However, it is noted that the rate of fuel loss is significantly less after this initial loss which means that the characteristic of the leak must change to match the lesser rate. This is highly unlikely. In addition the leak would have to occur each time the fuel quantity reaches 14,500 pounds and stop at any higher quantity which again is highly unlikely.

At approximately 1400 pounds remaining the number 3 tank would be nearing empty and the number 4 tank boost pump would be starting which suggests that pumping of the fuel overboard when the number 4 tank boost pumps start is a possible cause factor. A test was run with the boost pump outlet connection loose and only 1 gallon per minute could be pumped overboard. Since this rate was much too low to account for the quantities lost this possibility was discarded.

c. The fuel quantity gauging and indicating system were reviewed for possible malfunction. It was noted that during the week ending November 17, a fuel gauging malfunction occurred. This malfunction resulted in the total fuel quantity gauge reading 6000 pounds higher than the sum of the individual tanks. The malfunction resulted from grounding of the shield on the rear probe of number 3 tank. A test was conducted on Article 137 with a fuel load approximating the load on the accident aircraft. The objective of the test was to determine the effect of a fuel quantity probe lifted ground on the total quantity gauge with a wet and dry probe at 6 degrees and 0 degrees fuselage reference angle. The thought was that with a 6000 pound plus error existing in tank 3 or 5 due to a lifted ground or a false ground that the error would disappear when the tank was empty thus approximating the condition reported by the pilot. The test proved that the error existed whether the probe was wet or dry. The only possibility of this type of error being a factor would be if the ground lifted (open circuit) while fuel was in the tank and closed when the tank was empty. This is a possibility particularly since current flows in the system are low and a light contact is sufficient to make a good connection. Also the connection is at the bottom of tank where the buoyancy effect of the fuel would be lost when the tank went empty.

Additional tests were conducted adding resistance to the probe ground circuit and any quantity error up to the maximum for a given probe could be obtained.

The fuel loading sheet filled out for the accident flight was reviewed. The total indicator showed 5950 pounds of fuel prior to fueling. According to the system calibration which was performed on 21 Sep 1966, the corrected reading was 5130. Two refueling trucks loaded a total of 47,300 pounds of fuel giving a total of 52,450 pounds of fuel aboard the aircraft prior to engine start. The total indicator then showed 53,000 pounds corrected to 52,600 pounds which compares favorably. However it is not known how accurate the totalizer system was since no method exists for measuring the liquid level in the tanks. Any error present in the system prior to refueling would also show up after fueling and since totalizer readings are used in both calculations the errors would balance out. The only positive method of checking the totalizer at each fueling is by dipping the tanks or starting from a known empty condition. Another possible method is to completely fill the tanks and then off load a measured quantity to the desired load. None of these methods were used.
It was also noted that during a quantity check of the number 4 tank after complying with Service Bulletin 1061, the system calibration had apparently changed. This may have been due to the replacement of the left probe in number 3 tank during the week ending November 17 which was discussed above. A complete system calibration was not made following this replacement.

A review of the fuel system calibration procedures was made. Two procedures; one dated 15 April 1966 and one dated 31 August 1966, were in effect. The earlier procedure was used to calibrate Article 125. The only difference is that the letter procedure requires weighing the aircraft during refueling which serves as a cross check of both the indicating system and the tanker readings. The calibration is made by filling each tank separately in 1000 pound increments until all tanks are full. The order of filling is tank 4, tank 3, tank 5, tank 2, tank 1 and tank 6. There is a discrepancy in that the totalizer error at a given quantity depends on the distribution of this quantity in the various tanks. Therefore, the most accurate method of calibration is to fill the system and defuel in the sequence the fuel is used in flight.

d. The pilot reported that the fuel tanks were full after the first refueling; however, the tanker aircraft commander stated that the fuel off load flow rate at this time was between 1000 and 2000 pounds per minute. This corresponds to 60,000 to 120,000 pounds per hour which is considerably higher than the combined engine fuel flow rates during refueling. It therefore appears that the aircraft was not full at the time of disconnect even though the quantity indicator was reading full.

Findings:

1. The existence of a gauging error causing the quantity indicator to read high until approximately 14,000 pounds of fuel remained is considered possible.

2. A requirement exists for a more positive method of determining fuel quantity aboard the aircraft during ground fueling of the aircraft.

3. Fuel quantity calibration procedures are not ideal in that the calibration is not made in the sequence the fuel is used.

4. Changing of a fuel probe could change system calibration significantly.

5. The possibility of a fuel leak causing a loss of fuel is considered remote.

Recommendations:

1. Establish a requirement to defuel aircraft after flight comparing the fuel indicator quantity and off loaded quantity. A differential limit should be established.

2. On all ground fuelings the aircraft should be filled from a zero-fuel condition and then fuel off loaded to desired fuel quantity. Tolerances must be established for difference in indicator and tanker readings, both at the full and off load points.
3. Fuel tank dip stick capability should be provided.

4. A requirement for fuel system calibration should be established when any major component in the fuel system, such as a probe, is changed.

5. Fuel system quantity calibration procedures should be changed to conduct the calibration in the sequence the fuel is used from the tanks.

ARThUR G. SMITH
Propulsion Engineer
DIG/IS

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)
ELECTRICAL, ELECTRONIC AND INSTRUMENT GROUP

A. ELECTRICAL SYSTEM:

1. System Description.

a. The airplane was equipped with two engine-driven AC generators, having an output of 30 KVA, 3-phase variable frequency current. Each generator furnishes power to the left and right AC buses respectively. An automatic and manual means is provided to open the contactor of a failed generator and close the bus tie contactor so that one generator can energize both buses. One generator can furnish sufficient power to energize both buses indefinitely. The left bus furnishes power to eight fuel booster pumps, left engine fuel shutoff valve, fuel cross feed valve, HF communication, UHF blower, left EGT control power, inertial navigation system (INS), Nr 1 nitrogen heaters, left transformerrectifier (T-R) unit, and special electronic equipment. The right bus furnishes power to eight fuel booster pumps (total 16), right engine fuel shutoff valve, Q-Bay equipment, Nr 2 nitrogen heaters, right EGT control power, right T-R unit, and the trim actuator transformer. The latter provides 26 volts AC power for the following trim actuators: manual pitch, automatic pitch, yaw and roll.

b. The outputs of the two T-R units are connected in parallel to the DC essential bus and the DC monitored bus. Each T-R is rated at 200 amperes and one of them is capable of providing the entire DC load indefinitely. Emergency DC power is provided by two silver-zinc batteries having a capacity of 25 ampere-hours each. In the event both T-R units fail, the batteries supply power to the DC essential bus only. All DC loads are powered by the essential bus except the Q-Bay and INS equipment which is connected to the monitored bus.

c. The regulated AC power source is provided by three solid state 600 VA inverters. Each inverter furnishes power to individual loads. A fourth identical inverter is used as an emergency source of power. It can be switched to any of the three individual loads by manual means.

2. Investigation and Analysis.

a. The generators were the only recognizable electrical items at the immediate point of impact. The force of the high speed impact reduced all electrical components to a state that precluded comprehensive analysis. A review of transcriptions from HF and UHF air-ground communication showed that there was no difficulty reported in regard to the electrical/electronic system except a circuit breaker which opened at repeated intervals. A later report on the Dictet tapes indicated that the same circuit breaker had remained engaged during the leg of the flight being reported at that time. A review of the maintenance history showed that previous difficulty was experienced with a circuit breaker associated with the aft bypass door system. The actual identity of the circuit breaker opening in this flight was determined, in subsequent testimony, to be an auto pilot circuit breaker.

b. Further review of the air-ground UHF transcription showed that the pilot reported engines flamed out at a distance of 67 nautical miles from home plate on a radial of 100 deg. true. The generator contactors would be expected to open at this time. The loss of both generators would preclude further HF operation including [redacted] signals. At this particular time it is believed that the last communication on UHF was accomplished with that equipment being powered by the batteries.

SECRET

FOR OFFICIAL USE ONLY
Approved For Release 2001/08/29: CIA-RDP71B00590R000100010001-4

25X1A
c. There were no lamps recovered from any system to enable filament analysis to determine illumination at impact time. This is not unusual when considering the type of impact involved.

B. ELECTRONIC SYSTEM:

1. System Description.

 a. The electronic system contained numerous sub-systems, particularly those associated with the flight control system.

 b. The communication system included:

 (1) AIC-18 interphone system for communication with the ground crew and for voice input to the Dictet recorder.

 (2) ARC-50 UHF Communication.

 (3) 618T single sideband (SSB) HF communication.

 (4) ____________________________ 25X1A

 c. The navigation system included:

 (1) ARC-50 UHF communication.

 (2) ARA-50 UHF/DF in conjunction with the ARC-50.

 (3) DF-203 LF/MF ADF.

 (4) ARN-52 TACAN.

 (5) 914-X-1 IFP/SIF transponder.

 (6) Inertial navigation system (INS).

 d. The recording systems included:

 (1) Dictaphone recorder, trade name "Dictet". This device records events and briefs information requirements for the record and de-briefing purposes. The tape transport operates only when the TRANSMIT-INTERPHONE switch on the stick grip is held on the INTERPHONES position. The recording medium is standard one-quarter inch mylar type.

 (2) Lockheed flight recorder, Model 1090/M. This is a modified version of the Model 1090 which is used by civil air carriers. The modifications were necessary to provide for higher speed and altitude information in consonance with the performance of the A-12 aircraft. It is installed in the RH chine approximately ten feet aft of the cockpit. It records airspeed, altitude, heading and vertical acceleration against a time base which is a function of tape speed and time pips punched on the tape. The recording method is mechanical (four traces inscribed on aluminum alloy or inconel tape by four stylus, one for each parameter).

 (3) Signal Conditioner and Data Monitor system (SCDM). The recorder utilizes one inch mylar tape and records 10 parameters:

 (a) Plot Number (Map position)
(b) Angular Rate (rate at which payload is positioned with reference to vertical). The constant reading of this value on the transcription of the recovered tape is not pertinent for investigation purposes.

(c) Roll (in degrees).

(d) Pitch (in degrees).

(e) Altitude (in hundreds of feet).

(f) Heading (in degrees).

(g) Elapsed Time (in seconds)

(h) Ground Speed (in knots).

(i) Longitude (in degrees).

(j) Latitude (in degrees).

(4) Two cameras, canopy-mounted, recording an over-the-shoulder view of the instrument panel.

2. Investigation and Analysis.

a. The major components of the electronic system (black boxes etc.) had no value for investigative purposes since the impact damage was extensive. Useful information was derived from the Dictet tape and the SCRM tape (see Tab V). The continuous length of Dictet tape recovered contained conversation from engine start up to point along the final westbound leg at or shortly after the final turn. The broken pieces recovered could not be placed in consecutive order since some parts of each layer were missing. In addition, there is no assurance that all of the recorded tape was recovered. A total of eighteen broken pieces were recovered, the longest (27 inches) which most likely would have been recorded earlier than the shorter pieces, varying in length from 2 2/8 inches to 4 3/8 inches. It was estimated that not more than one fourth of the available Dictet tape was used, based upon the amount of tape that was on the supply reel. The Dictet recorder was installed on the structure immediately aft of the left side of the ejection seat. This location is not conducive to crash and fire resistance with the objective to recover undamaged tape. A better location for the recorder in this type of aircraft would be the canopy, since this item always escapes fire damage if the ejection system is used and is usually recovered in its entirety. Ejection over deep water would pose an additional problem.

b. The SCRM recorder is likewise not crash-resistant. However, a considerable amount of useful information was obtained from tape recovered therefrom (see Tab V).

c. The Lockheed flight recorder, Model 109C/M was designed to be crash-resistant. Its crash-resistant properties are greatly reduced by installing it in the chine. Devices of this kind have to be installed as far aft as possible or have ejection capability at the critical time. In this type of aircraft, either method is considered unsound since the entire system is self-contained and defies a means of ejection. Relocation further aft poses a problem not worth solving since it records only four parameters and would require considerable engineering effort. In addition, the method of data recovery is somewhat crude based on state-of-the-art concepts and the data accuracy can only be considered approximate when compared to data from the SCRM system, telemetry systems, or modern flight recorders, the recoverable portion of which concerns only the tape cassette and a means to find it by including a beacon in the recoverable package. The tape recovered from the crash recorder included portions that were not continuous. This flight was recorded up to a point in the final turn corresponding to a heading of approximately 215 degrees magnetic. The remaining portion of recorded...
Wind Profile for Trajectory of Aircraft

From 80,000 Feet to the Surface

<table>
<thead>
<tr>
<th>Altitude (feet)</th>
<th>Wind (°/kts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>030/35</td>
</tr>
<tr>
<td>700</td>
<td>010/21</td>
</tr>
<tr>
<td>600</td>
<td>350/17</td>
</tr>
<tr>
<td>550</td>
<td>280/28</td>
</tr>
<tr>
<td>500</td>
<td>270/40</td>
</tr>
<tr>
<td>450</td>
<td>270/70</td>
</tr>
<tr>
<td>400</td>
<td>270/100</td>
</tr>
<tr>
<td>350</td>
<td>270/105</td>
</tr>
<tr>
<td>300</td>
<td>260/100</td>
</tr>
<tr>
<td>250</td>
<td>270/100</td>
</tr>
<tr>
<td>240</td>
<td>270/105</td>
</tr>
<tr>
<td>230</td>
<td>275/100</td>
</tr>
<tr>
<td>200</td>
<td>280/90</td>
</tr>
<tr>
<td>180</td>
<td>280/90</td>
</tr>
<tr>
<td>160</td>
<td>280/75</td>
</tr>
<tr>
<td>140</td>
<td>280/60</td>
</tr>
<tr>
<td>120</td>
<td>275/50</td>
</tr>
<tr>
<td>100</td>
<td>270/40</td>
</tr>
<tr>
<td>90</td>
<td>260/39</td>
</tr>
<tr>
<td>80</td>
<td>250/39</td>
</tr>
<tr>
<td>70</td>
<td>250/35</td>
</tr>
<tr>
<td>60</td>
<td>240/30</td>
</tr>
<tr>
<td>50</td>
<td>240/25</td>
</tr>
<tr>
<td>SFC</td>
<td>010/35</td>
</tr>
</tbody>
</table>
(FOR OFFICIAL USE ONLY (SPECIAL HANDLING REQUIRED. SEE AFR 127-4)

STATEMENT OF WEATHER CONDITIONS AT TIME OF ACCIDENT

The estimate of the weather at the accident site at the time of the crash was:

1. Clouds: 9,000 - 10,000 MSL bases of overcast
 18,000 MSL tops of overcast.
 Clear above and below this layer.

2. Surface winds: 010 degrees at 30 to 40 knots.

3. Precipitation: Snow showers to the north and northwest but not reaching
 the crash site until 10 minutes after the accident.

4. Estimated surface pressure at 06/0000Z 1000 MB (29.64 Alt. Stg).
 Estimated 3 hour pressure tendency prior to 000Z zero. Estimated tendency subsequent
 to 000Z plus 8 millibars.

Above estimates are based on:

1. Pilot reports:
 a. D-45 was observed to enter clouds in dive.
 b. Capt. Sharp, 4526th CCTS, Nellis AFB, Nevada. (Bases of cloud as D-45
 exited from them). (Wind and precip to north while orbiting crash scene).

2. Cold front and associated weather moving through area. See attachments 2
 thru 7.

NEAREST OFFICIAL WEATHER OBSERVING STATION.

The weather observed at the closest official weather station (Cedar City, Utah) at
the time of crash was:

CDC 06/0000Z Estimated 5000 ft broken, visibility 30 miles, surface winds
240 degrees at 15 gusts to 22 knots.

This station is approximately 73 nautical miles ENE of the crash site.

One hour prior (05/2300Z) the weather at Cedar City was: 5000 ft scattered,
visibility 30 miles, surface winds 210 degrees 17 gusts to 25 knots. Remarks---
Stratocumulus line west thru northeast horizon.

One hour after: (06/0100Z) Special observation. Indefinite 200 ft, visibility
one eighth of a mile with heavy snow, surface winds 350 degrees 18 knots.
Remarks—Snow began 30 minutes past the hour, wind shift at 1730 H,
pressure rising rapidly.

NOTE: OBSERVED WEATHER CLOUD BASES AT CEDAR CITY ARE HEIGHTS ABOVE GROUND

Atch # 10

SECRET

FOR OFFICIAL USE ONLY
(Special Handling Required. See AFR 127-4)

Approved For Release 2001/08/29 : CIA-RDP71B00590R00010001001-4
INFORMATION TRANSCRIBED FROM REMAINS OF SC & DM TAPE

1. Mission Number: 67T007
2. Tape Number: INS010
3. Date: 5 January 1967
4. Aircraft Number: 125
5. SIP Pack Number: 000000
6. Camera Number: 101870
7. Ref Start Time (Zulu): 193746
8. Ins Pack Number: H11J11
9. Recorder Number: F02G01

10. Explanation of Columnar Headings:
 a. Plot Number: Map position
 b. Roll: In degrees
 c. Pitch: In degrees
 d. Altitude: In hundreds of feet
 e. Heading: In degrees
 f. Elapsed Time: In seconds (subtract 974 seconds for time after takeoff (Takeoff Time 11:59 PST))
 g. Ground Speed: In knots
 h. Longitude: In degrees
 i. Latitude: In degrees

Note: Takeoff time was 1159 PST. Subtract 1274 from seconds shown in elapsed time column to obtain time after takeoff.
<table>
<thead>
<tr>
<th>ANG RATE</th>
<th>ROLL</th>
<th>PITCH</th>
<th>ALT</th>
<th>HEADING</th>
<th>ELAPSED TIME</th>
<th>GROUND SPEED</th>
<th>LONG</th>
<th>LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U00291</td>
<td>0003</td>
<td>0050</td>
<td>00749</td>
<td>01007</td>
<td>12699</td>
<td>01789</td>
<td>09337</td>
<td>03812</td>
</tr>
<tr>
<td>U00291</td>
<td>0005</td>
<td>0051</td>
<td>00745</td>
<td>01007</td>
<td>12727</td>
<td>01791</td>
<td>09307</td>
<td>03808</td>
</tr>
<tr>
<td>U00291</td>
<td>0007</td>
<td>0055</td>
<td>00744</td>
<td>01022</td>
<td>12785</td>
<td>01793</td>
<td>09249</td>
<td>03800</td>
</tr>
<tr>
<td>U00291</td>
<td>00287</td>
<td>0051</td>
<td>00754</td>
<td>01107</td>
<td>12841</td>
<td>01783</td>
<td>09189</td>
<td>03792</td>
</tr>
<tr>
<td>U00291</td>
<td>00315</td>
<td>0053</td>
<td>00751</td>
<td>01237</td>
<td>12880</td>
<td>01791</td>
<td>09152</td>
<td>03778</td>
</tr>
<tr>
<td>U00291</td>
<td>00282</td>
<td>0064</td>
<td>00754</td>
<td>01372</td>
<td>12917</td>
<td>01801</td>
<td>09120</td>
<td>03760</td>
</tr>
<tr>
<td>U00291</td>
<td>00251</td>
<td>0058</td>
<td>00773</td>
<td>01523</td>
<td>12965</td>
<td>01791</td>
<td>09089</td>
<td>03730</td>
</tr>
<tr>
<td>U00291</td>
<td>00305</td>
<td>0048</td>
<td>00773</td>
<td>01653</td>
<td>13012</td>
<td>01793</td>
<td>09069</td>
<td>03695</td>
</tr>
<tr>
<td>U00291</td>
<td>00283</td>
<td>0062</td>
<td>00767</td>
<td>01816</td>
<td>13060</td>
<td>01797</td>
<td>09059</td>
<td>03656</td>
</tr>
<tr>
<td>U00291</td>
<td>00295</td>
<td>0057</td>
<td>00772</td>
<td>01878</td>
<td>13079</td>
<td>01792</td>
<td>09059</td>
<td>03640</td>
</tr>
<tr>
<td>U00291</td>
<td>00303</td>
<td>0047</td>
<td>00774</td>
<td>02023</td>
<td>13126</td>
<td>01785</td>
<td>09066</td>
<td>03602</td>
</tr>
<tr>
<td>U00291</td>
<td>00282</td>
<td>0050</td>
<td>00765</td>
<td>02133</td>
<td>13164</td>
<td>01784</td>
<td>09082</td>
<td>03573</td>
</tr>
<tr>
<td>U00291</td>
<td>00299</td>
<td>0054</td>
<td>00759</td>
<td>02277</td>
<td>13202</td>
<td>01789</td>
<td>09103</td>
<td>03546</td>
</tr>
<tr>
<td>U00291</td>
<td>00506</td>
<td>0057</td>
<td>00762</td>
<td>02398</td>
<td>13240</td>
<td>01794</td>
<td>09131</td>
<td>03526</td>
</tr>
<tr>
<td>U00291</td>
<td>00290</td>
<td>0054</td>
<td>00765</td>
<td>02533</td>
<td>13278</td>
<td>01797</td>
<td>09166</td>
<td>03512</td>
</tr>
<tr>
<td>U00291</td>
<td>00292</td>
<td>0057</td>
<td>00769</td>
<td>02653</td>
<td>13316</td>
<td>01798</td>
<td>09203</td>
<td>03503</td>
</tr>
<tr>
<td>U00291</td>
<td>00270</td>
<td>0059</td>
<td>00778</td>
<td>02778</td>
<td>13354</td>
<td>01794</td>
<td>09242</td>
<td>03501</td>
</tr>
<tr>
<td>U00291</td>
<td>00153</td>
<td>0056</td>
<td>00793</td>
<td>02848</td>
<td>13401</td>
<td>01775</td>
<td>09288</td>
<td>03506</td>
</tr>
<tr>
<td>U00291</td>
<td>00125</td>
<td>0045</td>
<td>00780</td>
<td>02888</td>
<td>13439</td>
<td>01773</td>
<td>09325</td>
<td>03513</td>
</tr>
<tr>
<td>U00291</td>
<td>00001</td>
<td>0054</td>
<td>00766</td>
<td>02998</td>
<td>13477</td>
<td>01777</td>
<td>09361</td>
<td>03521</td>
</tr>
<tr>
<td>U00291</td>
<td>00003</td>
<td>0057</td>
<td>00768</td>
<td>02998</td>
<td>13515</td>
<td>01777</td>
<td>09398</td>
<td>03531</td>
</tr>
<tr>
<td>U00291</td>
<td>00045</td>
<td>0055</td>
<td>00773</td>
<td>02908</td>
<td>13553</td>
<td>01769</td>
<td>09435</td>
<td>03539</td>
</tr>
<tr>
<td>U00291</td>
<td>00009</td>
<td>0046</td>
<td>00772</td>
<td>02913</td>
<td>13591</td>
<td>01761</td>
<td>09470</td>
<td>03549</td>
</tr>
<tr>
<td>U00291</td>
<td>00964</td>
<td>0041</td>
<td>00753</td>
<td>02908</td>
<td>13628</td>
<td>01772</td>
<td>09507</td>
<td>03559</td>
</tr>
<tr>
<td>U00291</td>
<td>00989</td>
<td>0052</td>
<td>00740</td>
<td>02873</td>
<td>13666</td>
<td>01781</td>
<td>09543</td>
<td>03569</td>
</tr>
<tr>
<td>U00291</td>
<td>00901</td>
<td>0051</td>
<td>00747</td>
<td>02848</td>
<td>13704</td>
<td>01778</td>
<td>09580</td>
<td>03576</td>
</tr>
<tr>
<td>U00291</td>
<td>00006</td>
<td>0045</td>
<td>00749</td>
<td>02848</td>
<td>13742</td>
<td>01775</td>
<td>09617</td>
<td>03582</td>
</tr>
<tr>
<td>U00291</td>
<td>00968</td>
<td>0044</td>
<td>00739</td>
<td>02838</td>
<td>13780</td>
<td>01785</td>
<td>09655</td>
<td>03589</td>
</tr>
<tr>
<td>U00291</td>
<td>00977</td>
<td>0048</td>
<td>00735</td>
<td>02823</td>
<td>13818</td>
<td>01797</td>
<td>09693</td>
<td>03596</td>
</tr>
<tr>
<td>ANG RATE</td>
<td>ROLL</td>
<td>PITCH</td>
<td>ALT</td>
<td>HEADING</td>
<td>ELAPSED TIME</td>
<td>GROUND SPEED</td>
<td>LONG</td>
<td>LAT</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>U00291</td>
<td>00999</td>
<td>00048</td>
<td>00739</td>
<td>02828</td>
<td>13856</td>
<td>01801</td>
<td>09731</td>
<td>03601</td>
</tr>
<tr>
<td>U00291</td>
<td>00983</td>
<td>00044</td>
<td>00738</td>
<td>02823</td>
<td>13894</td>
<td>01805</td>
<td>09770</td>
<td>03606</td>
</tr>
<tr>
<td>U00291</td>
<td>00004</td>
<td>00053</td>
<td>00741</td>
<td>02813</td>
<td>13931</td>
<td>01811</td>
<td>09808</td>
<td>03611</td>
</tr>
<tr>
<td>U00291</td>
<td>00997</td>
<td>00054</td>
<td>00748</td>
<td>02823</td>
<td>13960</td>
<td>01808</td>
<td>09836</td>
<td>03616</td>
</tr>
<tr>
<td>U00291</td>
<td>00988</td>
<td>00044</td>
<td>00752</td>
<td>02813</td>
<td>14007</td>
<td>01803</td>
<td>09885</td>
<td>03621</td>
</tr>
<tr>
<td>U00291</td>
<td>00002</td>
<td>00045</td>
<td>00745</td>
<td>02813</td>
<td>14045</td>
<td>01810</td>
<td>09925</td>
<td>03626</td>
</tr>
<tr>
<td>U00291</td>
<td>00020</td>
<td>00052</td>
<td>00741</td>
<td>02808</td>
<td>14083</td>
<td>01817</td>
<td>09963</td>
<td>03631</td>
</tr>
<tr>
<td>U00291</td>
<td>00014</td>
<td>00050</td>
<td>00749</td>
<td>02812</td>
<td>14121</td>
<td>01816</td>
<td>10002</td>
<td>03636</td>
</tr>
<tr>
<td>U00291</td>
<td>00981</td>
<td>00052</td>
<td>00754</td>
<td>02803</td>
<td>14159</td>
<td>01811</td>
<td>10042</td>
<td>03641</td>
</tr>
<tr>
<td>U00291</td>
<td>00016</td>
<td>00050</td>
<td>00759</td>
<td>02803</td>
<td>14206</td>
<td>01804</td>
<td>10090</td>
<td>03646</td>
</tr>
<tr>
<td>U00291</td>
<td>00010</td>
<td>00047</td>
<td>00760</td>
<td>02803</td>
<td>14244</td>
<td>01801</td>
<td>10128</td>
<td>03649</td>
</tr>
<tr>
<td>U00291</td>
<td>00011</td>
<td>00052</td>
<td>00759</td>
<td>02793</td>
<td>14282</td>
<td>01801</td>
<td>10168</td>
<td>03654</td>
</tr>
<tr>
<td>U00291</td>
<td>00993</td>
<td>00046</td>
<td>00761</td>
<td>02793</td>
<td>14320</td>
<td>01796</td>
<td>10207</td>
<td>03657</td>
</tr>
<tr>
<td>U00291</td>
<td>00015</td>
<td>00046</td>
<td>00755</td>
<td>02788</td>
<td>14357</td>
<td>01801</td>
<td>10245</td>
<td>03661</td>
</tr>
<tr>
<td>U00291</td>
<td>00013</td>
<td>00046</td>
<td>00752</td>
<td>02793</td>
<td>14396</td>
<td>01807</td>
<td>10285</td>
<td>03664</td>
</tr>
<tr>
<td>U00291</td>
<td>00000</td>
<td>00048</td>
<td>00751</td>
<td>02788</td>
<td>14433</td>
<td>01812</td>
<td>10323</td>
<td>03667</td>
</tr>
<tr>
<td>U00291</td>
<td>00006</td>
<td>00050</td>
<td>00755</td>
<td>02788</td>
<td>14471</td>
<td>01814</td>
<td>10363</td>
<td>03671</td>
</tr>
<tr>
<td>U00291</td>
<td>00982</td>
<td>00045</td>
<td>00759</td>
<td>02783</td>
<td>14518</td>
<td>01809</td>
<td>10412</td>
<td>03676</td>
</tr>
<tr>
<td>U00291</td>
<td>00000</td>
<td>00047</td>
<td>00753</td>
<td>02773</td>
<td>14556</td>
<td>01810</td>
<td>10451</td>
<td>03679</td>
</tr>
<tr>
<td>U00291</td>
<td>00983</td>
<td>00051</td>
<td>00756</td>
<td>02778</td>
<td>14594</td>
<td>01807</td>
<td>10490</td>
<td>03681</td>
</tr>
<tr>
<td>U00291</td>
<td>00929</td>
<td>00047</td>
<td>00762</td>
<td>02788</td>
<td>14632</td>
<td>01795</td>
<td>10530</td>
<td>03684</td>
</tr>
<tr>
<td>U00291</td>
<td>00974</td>
<td>00041</td>
<td>00756</td>
<td>02788</td>
<td>14670</td>
<td>01792</td>
<td>10568</td>
<td>03688</td>
</tr>
<tr>
<td>U00291</td>
<td>00985</td>
<td>00044</td>
<td>00745</td>
<td>02773</td>
<td>14707</td>
<td>01797</td>
<td>10607</td>
<td>03691</td>
</tr>
<tr>
<td>U00291</td>
<td>00918</td>
<td>00043</td>
<td>00743</td>
<td>02788</td>
<td>14745</td>
<td>01796</td>
<td>10646</td>
<td>03694</td>
</tr>
<tr>
<td>U00291</td>
<td>00014</td>
<td>00041</td>
<td>00738</td>
<td>02778</td>
<td>14783</td>
<td>01804</td>
<td>10685</td>
<td>03698</td>
</tr>
<tr>
<td>U00291</td>
<td>00975</td>
<td>00042</td>
<td>00734</td>
<td>02778</td>
<td>14820</td>
<td>01813</td>
<td>10725</td>
<td>03699</td>
</tr>
<tr>
<td>U00291</td>
<td>00017</td>
<td>00048</td>
<td>00737</td>
<td>02768</td>
<td>14877</td>
<td>01821</td>
<td>10783</td>
<td>03704</td>
</tr>
<tr>
<td>U00291</td>
<td>00020</td>
<td>00045</td>
<td>00746</td>
<td>02773</td>
<td>14915</td>
<td>01820</td>
<td>10823</td>
<td>03706</td>
</tr>
<tr>
<td>U00291</td>
<td>00992</td>
<td>00043</td>
<td>00748</td>
<td>02773</td>
<td>14962</td>
<td>01822</td>
<td>10873</td>
<td>03709</td>
</tr>
<tr>
<td>U00291</td>
<td>00000</td>
<td>00044</td>
<td>00748</td>
<td>02768</td>
<td>15009</td>
<td>01831</td>
<td>10923</td>
<td>03711</td>
</tr>
<tr>
<td>U00291</td>
<td>00006</td>
<td>00036</td>
<td>00761</td>
<td>02768</td>
<td>15047</td>
<td>01797</td>
<td>10961</td>
<td>03714</td>
</tr>
<tr>
<td>ANG RATE</td>
<td>ROLL</td>
<td>PITCH</td>
<td>ALT</td>
<td>HEADING</td>
<td>ELAPSED TIME</td>
<td>GROUND SPEED</td>
<td>LONG</td>
<td>LAT</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>0291</td>
<td>0958</td>
<td>042</td>
<td>741</td>
<td>275.8</td>
<td>15141</td>
<td>1552</td>
<td>110.53</td>
<td>37.18</td>
</tr>
<tr>
<td>0983</td>
<td>011</td>
<td>466</td>
<td>272.3</td>
<td>15724</td>
<td>538</td>
<td>113.90</td>
<td>37.24</td>
<td></td>
</tr>
</tbody>
</table>
USAFAccident Incident Index

TAB

A - AF FORM 711 - USAF Accident/Incident Report
B - AF FORM 711a - Ground Accident Report (Not applicable for Aftt Accidents)
C - AF FORM 711b - Aircraft Accident/Incident Report
D - AF FORM 711c - Aircraft Maintenance Materiel Report
E - AF FORM 711d - Missile Accident/Incident Report
F - AF FORM 711e - Explosives Accident/Incident Report
G - AF FORM 711f - Nuclear Accident/Incident Report
H - AF FORM 711g - Life Sciences Report of an Individual
I - Unsatisfactory Report
J - Teardown Deficiency Report
K - List of Technical Orders Not Complied With
L - AFTO Forms 781 Series
M - AF FORM 5
N - Statements
O - Rebuttals
P - Orders Appointing Invest Board
Q - Board Proceedings
R - DD FORM 175 or DD FORM 1080
S - DD FORM 365 (Wgt-Balance)
T - Private Property Damage
U - Damage to Aircraft
V - Communication - Transcripts
W - Additional Data
X - Other Forms
Y - Diagram
Z - Photos
12 January 1967

FORWARD TRANSFER SEQUENCING TEST - SHIP 132

PROCEDURE:
Defuel the airplane to
1 0
2 0
3 0
4 4000/5000
5 0
6 0

All boost pump breakers set
Start engines
Run at Idle
Engage L & R generators
Start forward transfer (normal)

Pump sequencing:
1. Tank #1 goes off on fwd xfer
2. Tank #2 comes on when Tank 4 is low - Read
 Tank 4 at this point. 400
3. Switch to 4 only transfer and note that
 Tank 1 stays on the line.

END TEST

SECRET
USAFA CCIDENT INCIDENT INDEX

TAB
A - AF FORM 711 - USAF Accident/Incident Report
B - AF FORM 711a - Ground Accident Report (Not applicable for Actt Accidents)
C - AF FORM 711b - Aircraft Accident/Incident Report
D - AF FORM 711c - Aircraft Maintenance Materiel Report
E - AF FORM 711d - Missile Accident/Incident Report
F - AF FORM 711e - Explosives Accident/Incident Report
G - AF FORM 711f - Nuclear Accident/Incident Report
H - AF FORM 711g - Life Sciences Report of an Individual
I - Unsatisfactory Report
J - Teardown Deficiency Report
K - List of Technical Orders Not Complied With
L - AFTO Forms 781 Series
M - AF FORM 5
N - Statements
O - Rebuttals
P - Orders Appointing Inves Board
Q - Board Proceedings
R - DD FORM 175 or DD FORM 1080
S - DD FORM 365 (Wgt-Balance)
T - Private Property Damage
U - Damage to Aircraft
V - Communication - Transcripts
W - Additional Data
X - Other Forms
Y - Diagram
Z - Photos
PHOTOGRAPHS

Accident Scene and Wreckage

Photo Number:
1. Impact point
2. Angle of Impact
3. Largest Piece of Wreckage
4. Major Components Reassembled
5. Total Recovered Wreckage
6. INS - Last Distance to Go and Ground Speed Readings
1.6

.687 miles

.333 knots
THIS DOCUMENT REQUIRES SPECIAL HANDLING

HANDLING PROCEEDS:

THIS DOCUMENT CONTAINS INFORMATION REGARDING A HIGHLY CLASSIFIED ACTIVITY. PERMISSION TO TRANSFER CUSTODY, OR PERMIT ACCESS TO THIS DOCUMENT MUST BE OBTAINED FROM THE ORIGINATOR. HAND CARRY PROCEDURES WILL BE APPLIED TO ANY INTER-OFFICE OR INTRA-AGENCY MOVEMENT OF THIS DOCUMENT.

This document contains information referring to Project OXCART

<table>
<thead>
<tr>
<th>REFERRED TO OFFICE</th>
<th>DATE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSOR</td>
<td>9 Feb 67</td>
<td></td>
</tr>
<tr>
<td>DCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOCO</td>
<td>15 Feb 67</td>
<td></td>
</tr>
</tbody>
</table>

RETURN TO RECORDS CENTER IMMEDIATELY AFTER USE

CLASSIFICATION: SECRET

JOB 718.570 BOX 1

10 15/1